This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169715 #63 Apr 05 2024 11:10:14 %S A169715 1,6,66,996,18306,384156,8848236,218040696,5651108226,152254667436, %T A169715 4229523740916,120430899525096,3499628148747756,103446306284890536, %U A169715 3102500089343886696,94219208840385966096,2892652835496484004226,89662253086458906345036 %N A169715 The function W_6(2n) (see Borwein et al. reference for definition). %C A169715 Row sums of the fifth power of A008459. - _Peter Bala_, Mar 05 2013 %C A169715 a(n)/6^(2n) is the probability that two throws of n 6-sided dice will give the same result - _Henry Bottomley_, Aug 30 2016 %H A169715 Vincenzo Librandi, <a href="/A169715/b169715.txt">Table of n, a(n) for n = 0..200</a> %H A169715 D. Bernstein and T. Lange, <a href="http://dx.doi.org/10.2140/obs.2013.1.87">Two grumpy giants and a baby</a>, in ANTS X, Proc. Tenth Algorithmic Number Theory Symposium, 2013. %H A169715 J. M. Borwein, <a href="https://carmamaths.org/resources/jon/beauty.pdf">A short walk can be beautiful</a>, preprint, Journal of Humanistic Mathematics, Volume 6 Issue 1 (January 2016), pages 86-109. %H A169715 Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, <a href="https://www.carmamaths.org/resources/jon/walks.pdf">Some Arithmetic Properties of Short Random Walk Integrals</a>, FPSAC 2010, San Francisco, USA. %H A169715 Jonathan M. Borwein and Armin Straub, <a href="https://www.carmamaths.org/resources/jon/wmi-paper.pdf">Mahler measures, short walks and log-sine integrals</a>, preprint, Theoretical Computer Science, Volume 479, 1 April 2013, Pages 4-21. %H A169715 Armin Straub, <a href="http://arminstraub.com/pub/dissertation">Arithmetic aspects of random walks and methods in definite integration</a>, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. - From _N. J. A. Sloane_, Dec 16 2012 %F A169715 Sum_{n>=0} a(n)*x^n/n!^2 = (Sum_{n>=0} x^n/n!^2)^6 = BesselI(0, 2*sqrt(x))^6. - _Peter Bala_, Mar 05 2013 %F A169715 Recurrence: n^5*a(n) = 2*(2*n-1)*(14*n^4 - 28*n^3 + 28*n^2 - 14*n + 3)*a(n-1) - 4*(n-1)^3*(196*n^2 - 392*n + 255)*a(n-2) + 1152*(n-2)^2*(n-1)^2*(2*n-3)*a(n-3). - _Vaclav Kotesovec_, Mar 09 2014 %F A169715 a(n) ~ 3^(2*n+3) * 4^(n-1) / (Pi*n)^(5/2). - _Vaclav Kotesovec_, Mar 09 2014 %p A169715 W := proc(n,s) %p A169715 local a,ai ; %p A169715 if s = 0 then %p A169715 return 1; %p A169715 end if; %p A169715 a := 0 ; %p A169715 for ai in combinat[partition](s/2) do %p A169715 if nops(ai) <= n then %p A169715 af := [op(ai),seq(0,i=1+nops(ai)..n)] ; %p A169715 a := a+combinat[numbperm](af)*(combinat[multinomial](s/2,op(ai)))^2 ; %p A169715 end if ; %p A169715 end do; %p A169715 a ; %p A169715 end proc: %p A169715 A169715 := proc(n) %p A169715 W(6,2*n) ; %p A169715 end proc: # _R. J. Mathar_, Mar 27 2012 %t A169715 a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^6, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Dec 30 2013, after _Peter Bala_ *) %t A169715 max = 17; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 5] (* _Jean-François Alcover_, Mar 24 2015, after _Peter Bala_ *) %Y A169715 Cf. A002893, A002895, A008459, A169714. %K A169715 nonn %O A169715 0,2 %A A169715 _N. J. A. Sloane_, Apr 17 2010