cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169717 1A coefficients in an expansion of the elliptic genus of the K3 surface.

This page as a plain text file.
%I A169717 #27 Jul 20 2015 22:46:46
%S A169717 -1,45,231,770,2277,5796,13915,30843,65550,132825,260568,494385,
%T A169717 915124,1651815,2922381,5069867,8650530,14525742,24053215,39299778,
%U A169717 63447087,101268540,159963804,250188435,387746282,595726956,907877355,1372935090,2061208710,3073155810,4552039296,6700526910
%N A169717 1A coefficients in an expansion of the elliptic genus of the K3 surface.
%C A169717 Related to the Mathieu group M_24, see references.
%C A169717 Coefficients of the mock modular form H_1^(2). - _N. J. A. Sloane_, Mar 21 2015
%D A169717 Miranda C. N. Cheng, John F. R. Duncan and Jeffrey A Harvey, Umbral moonshine and the Niemeier lattices, Research in the Mathematical Sciences, 2014, 1:3; http://www.resmathsci.com/content/1/1/3
%D A169717 Eguchi, T., Ooguri, H., Taormina, A., Yang, S. K., Superconformal algebras and string compactification on manifolds with SU(N) holonomy. Nucl. Phys. B315, 193 (1989). doi:10.1016/0550-3213(89)90454-9
%D A169717 Eguchi, T., Taormina, A., Unitary representations of the N=4 superconformal algebra. Phys. Lett. B. 196(1), 75-81 (1987). doi:10.1016/0370-2693(87)91679-0
%D A169717 Eguchi, T., Taormina, A., Character formulas for the N=4 superconformal algebra. Phys. Lett. B. 200(3), 315-322 (1988). doi:10.1016/0370-2693(88)90778-2
%D A169717 H. Ooguri, Superconformal Symmetry and Geometry of Ricci Flat Kahler Manifolds, Int. J. Mod. Phys. A4 4303, 1989.
%H A169717 Miranda C. N. Cheng and John F. R. Duncan, <a href="http://arxiv.org/abs/1110.3859">On Rademacher sums, the largest Mathieu group, and the holographic modularity of moonshine</a> (2011)
%H A169717 Miranda C. N. Cheng and John F. R. Duncan, <a href="http://arxiv.org/abs/1201.4140">The largest Mathieu group and (mock) automorphic forms</a> (2012)
%H A169717 Miranda C. N. Cheng, John F. R. Duncan, Jeffrey A. Harvey, <a href="http://arxiv.org/abs/1204.2779">Umbral Moonshine</a>, arXiv:1204.2779v3.pdf, Oct 13 2013.
%H A169717 T. Eguchi and K. Hikami, <a href="http://arxiv.org/abs/0904.0911">Superconformal algebras and mock theta functions 2. Rademacher expansion for K3 surface</a>, Commun. Number Theor. and Phys. 3, 531-554, 2009. [arXiv:0904.0911].
%H A169717 Tohru Eguchi, Hirosi Ooguri and Yuji Tachikawa, <a href="http://arxiv.org/abs/1004.0956">Notes on the K3 surface and the Mathieu group M_24</a> (2010), arXiv:1004.0956; Exper. Math. 20, 91-96 (2011).
%F A169717 a(n) ~ 2/sqrt(8*n - 1) * exp(2*Pi*sqrt(1/2*(n - 1/8))). This formula gives a good estimate of a(n) even at smaller values of n. [From _N-E. Fahssi_, Apr 26 2010]
%e A169717 G.f. = -1 + 45*x + 231*x^2 + 770*x^3 + 2277*x^4 + 5796*x^5 + 13915*x^6 + ...
%e A169717 G.f. = -1/q + 45*q^7 + 231*q^15 + 770*q^23 + 2277*q^31 + 5796*q^39 + ...
%Y A169717 Equals A212301/2.
%K A169717 sign
%O A169717 0,2
%A A169717 _N. J. A. Sloane_, Apr 19 2010
%E A169717 Added a(0)=-1 and further terms from Cheng et al. Umbral Moonshine paper. - _N. J. A. Sloane_, Mar 21 2015