cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169761 Consider binary linear [N,K,D] codes with D=6 and redundancy R = N-K = n; a(n) = maximal value of N.

This page as a plain text file.
%I A169761 #5 Mar 16 2013 11:15:23
%S A169761 6,7,9,12,18,24,34
%N A169761 Consider binary linear [N,K,D] codes with D=6 and redundancy R = N-K = n; a(n) = maximal value of N.
%C A169761 A binary linear [N,K,D] code has length N, dimension K and minimal distance D.
%D A169761 A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
%D A169761 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978.
%H A169761 M. Grassl, <a href="http://www.codetables.de/">Bounds on the minimum distance of linear codes</a>
%e A169761 a(9) = 18 corresponds to the [18,9,6] extended quadratic residue code.
%Y A169761 Cf. A169762, A005865.
%K A169761 nonn,more
%O A169761 5,1
%A A169761 _N. J. A. Sloane_, May 08 2010