This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169764 #20 Jul 22 2017 10:04:41 %S A169764 0,0,0,0,0,0,0,0,0,16,0,176,0,1536,0,15424,0,147728,0,1448416,0, %T A169764 14060048,0,136947616,0,1332257856,0,12965578752,0,126169362176,0, %U A169764 1227776129152,0,11947846468608,0,116266505653888,0,1131418872918784,0,11010065269439104,0,107141489725900544 %N A169764 Number of closed Knight's tours on a 3 X n board. %C A169764 a(2n) = A070030(n), a(2n+1) = 0. %C A169764 A070030 is the main entry for this sequence. See that entry for much more information. %D A169764 D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010. %H A169764 Seiichi Manyama, <a href="/A169764/b169764.txt">Table of n, a(n) for n = 1..2031</a> (terms 1..1000 from Alois P. Heinz) %H A169764 George Jelliss, <a href="http://www.mayhematics.com/t/oa.htm">Open knight's tours of three-rank boards</a>, Knight's Tour Notes, note 3a (21 October 2000). %H A169764 George Jelliss, <a href="http://www.mayhematics.com/t/ob.htm">Closed knight's tours of three-rank boards</a>, Knight's Tour Notes, note 3b (21 October 2000). %F A169764 Asymptotic value .0001899*3.11949^n when n is even. %F A169764 Generating function: (16*z^10 + 80*z^12 - 544*z^14 - 1856*z^16 + 8080*z^18 + 9856*z^20 - 50864*z^22 - 64*z^24 + 152576*z^26 - 130816*z^28 - 214272*z^30 + 245760*z^32 + 222208*z^34 + 44544*z^36 - 53248*z^38 - 352256*z^40 + 81920*z^42 + 32768*z^44)/(1 - 6*z^2 - 64*z^4 + 200*z^6 + 1000*z^8 - 3016*z^10 - 3488*z^12 + 24256*z^14 - 23776*z^16 - 104168*z^18 + 203408*z^20 + 184704*z^22 - 443392*z^24 - 14336*z^26 + 151296*z^28 - 145920*z^30 + 263424*z^32 - 317440*z^34 - 36864*z^36 + 966656*z^38 - 573440*z^40 - 131072*z^42). %t A169764 CoefficientList[Series[(16*z^10 +80*z^12 -544*z^14 -1856*z^16 +8080*z^18 +9856*z^20 -50864*z^22 -64*z^24 +152576*z^26 -130816*z^28 -214272*z^30 +245760*z^32 +222208*z^34 +44544*z^36 -53248*z^38 -352256*z^40 +81920*z^42 +32768*z^44) / (1 -6*z^2 -64*z^4 +200*z^6 +1000*z^8 -3016*z^10 -3488*z^12 +24256*z^14 -23776*z^16 -104168*z^18 +203408*z^20 +184704*z^22 -443392*z^24 -14336*z^26 +151296*z^28 -145920*z^30 +263424*z^32 -317440*z^34 -36864*z^36 +966656*z^38 -573440*z^40 -131072*z^42), {z,0,50}], z] (* _Harvey P. Dale_, Feb 12 2013 *) %Y A169764 Cf. A070030, A169696, A169765-A169777. %K A169764 nonn,easy %O A169764 1,10 %A A169764 _N. J. A. Sloane_, May 10 2010, based on a communication from _Don Knuth_, Apr 28 2010