cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169766 Number of closed knight's tour diagrams of a 3 X n chessboard that have "Bergholtian symmetry".

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 48, 0, 152, 0, 352, 0, 1200, 0, 3752, 0, 12912, 0, 34768, 0, 122120, 0, 346128, 0, 1202240, 0, 3337424, 0, 11650864, 0, 32634960, 0, 113539392, 0, 316870592, 0, 1104442752, 0, 3086894528, 0, 10748713792, 0, 30023935744, 0
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Comments

When the board is rotated 180 degrees, the diagram remains the same, but the tour reverses direction.

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = 0 unless n mod 2 = 0.
Generating function: (2*(2*z^10 - 8*z^14 + 24*z^16 - 76*z^18 + 32*z^20 + 288*z^22 - 716*z^24 + 792*z^26 - 336*z^28 - 2908*z^30 + 7896*z^32 - 1464*z^34 - 3432*z^36 + 7416*z^38 - 32616*z^40 - 11792*z^42 + 39888*z^44 + 35472*z^46 + 47968*z^48 + 35776*z^50 - 143424*z^52 - 197824*z^54 - 15552*z^56 - 11008*z^58 + 181376*z^60 + 269440*z^62 + 78080*z^64 + 53760*z^66 + 44288*z^68 - 48128*z^70 - 112640*z^72 - 124928*z^74 - 227328*z^76 - 155648*z^78 + 98304*z^80 + 147456*z^82 + 32768*z^84))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84)

Extensions

More terms extracted from the g.f. by R. J. Mathar, Oct 09 2010