A169767 Number of closed knight's tour diagrams of a 3 X n chessboard that have "Eulerian symmetry".
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 124, 0, 0, 0, 1404, 0, 0, 0, 12824, 0, 0, 0, 126696, 0, 0, 0, 1222368, 0, 0, 0, 11930192, 0, 0, 0, 115974192, 0, 0, 0, 1128943296, 0, 0, 0, 10984783168, 0, 0, 0, 106897187552, 0, 0, 0, 1040241749856
Offset: 4
Keywords
References
- D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.
Links
- Seiichi Manyama, Table of n, a(n) for n = 4..4057
- George Jelliss, Open knight's tours of three-rank boards, Knight's Tour Notes, note 3a (21 October 2000).
- George Jelliss, Closed knight's tours of three-rank boards, Knight's Tour Notes, note 3b (21 October 2000).
Formula
A169767[n]=0 unless n mod 4 = 2.
Generating function: (2*(8*z^14 + 14*z^18 - 182*z^22 - 168*z^26 + 348*z^30 - 1000*z^34 + 13224*z^38 + 22904*z^42 - 105776*z^46 - 111616*z^50 + 292800*z^54 + 217536*z^58 - 294656*z^62 - 114432*z^66 - 22528*z^70 - 44032*z^74 + 180224*z^78 - 65536*z^82 + 32768*z^86))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84).
Comments