This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169768 #14 Jul 22 2017 12:56:28 %S A169768 0,0,0,0,0,0,4,0,0,0,24,0,24,0,276,0,176,0,2604,0,1876,0,25736,0, %T A169768 17384,0,248816,0,173064,0,2424608,0,1668712,0,23581056,0,16317480,0, %U A169768 229513584,0,158435296,0,2233386048,0,1543447264,0,21733496960 %N A169768 Number of geometrically distinct closed knight's tours of a 3 X n chessboard that have twofold symmetry. %D A169768 D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010. %H A169768 Seiichi Manyama, <a href="/A169768/b169768.txt">Table of n, a(n) for n = 4..4057</a> %H A169768 George Jelliss, <a href="http://www.mayhematics.com/t/oa.htm">Open knight's tours of three-rank boards</a>, Knight's Tour Notes, note 3a (21 October 2000). %H A169768 George Jelliss, <a href="http://www.mayhematics.com/t/ob.htm">Closed knight's tours of three-rank boards</a>, Knight's Tour Notes, note 3b (21 October 2000). %F A169768 a(n) = (A169765(n)+A169766(n)+A169767(n))/2. %F A169768 a(n) = 0 unless n mod 2 = 0. %F A169768 Generating function: (4*z^10 + 24*z^16 - 124*z^18 + 32*z^20 + 212*z^22 - 716*z^24 + 1248*z^26 - 336*z^28 - 5120*z^30 + 7896*z^32 - 4928*z^34 - 3432*z^36 + 41280*z^38 - 32616*z^40 + 22224*z^42 + 39888*z^44 - 140608*z^46 + 47968*z^48 - 151680*z^50 - 143424*z^52 + 189952*z^54 - 15552*z^56 + 413056*z^58 + 181376*z^60 - 50432*z^62 + 78080*z^64 - 121344*z^66 + 44288*z^68 - 141312*z^70 - 112640*z^72 - 337920*z^74 - 227328*z^76 + 49152*z^78 + 98304*z^80 + 163840*z^82 + 32768*z^84 + 65536*z^86)/ %F A169768 (1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84). %Y A169768 Cf. A070030, A169696, A169764-A169777. %K A169768 nonn %O A169768 4,7 %A A169768 _N. J. A. Sloane_, May 10 2010, based on a communication from _Don Knuth_, Apr 28 2010