cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A169769 Number of geometrically distinct closed knight's tours of a 3 X n chessboard.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 0, 44, 0, 396, 0, 3868, 0, 37070, 0, 362192, 0, 3516314, 0, 34237842, 0, 333077332, 0, 3241403380, 0, 31542464952, 0, 306944118820, 0, 2986962829456, 0, 29066627247828, 0, 282854730020224, 0, 2752516325518516, 0
Offset: 4

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Examples

			The six solutions for n=10 were first published by Kraitchik in 1927.
		

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Formula

a(n) = A169764(n)/4 + A169768(n)/2.
a(n) = 0 unless n mod 2 = 0.
Generating function: 2*z^10*((-2*(1 + 5*z^2 - 34*z^4 - 116*z^6 + 505*z^8 + 616*z^10 - 3179*z^12 - 4*z^14 + 9536*z^16 - 8176*z^18 - 13392*z^20 + 15360*z^22 + 13888*z^24 + 2784*z^26 - 3328*z^28 - 22016*z^30 + 5120*z^32 + 2048*z^34))/
(-1 + 6*z^2 + 64*z^4 - 200*z^6 - 1000*z^8 + 3016*z^10 + 3488*z^12 - 24256*z^14 + 23776*z^16 + 104168*z^18 - 203408*z^20 - 184704*z^22 + 443392*z^24 + 14336*z^26 - 151296*z^28 + 145920*z^30 - 263424*z^32 + 317440*z^34 + 36864*z^36 - 966656*z^38 + 573440*z^40 + 131072*z^42) -
(1 + 6*z^6 - 31*z^8 + 8*z^10 + 53*z^12 - 179*z^14 + 312*z^16 - 84*z^18 - 1280*z^20 + 1974*z^22 - 1232*z^24 - 858*z^26 + 10320*z^28 - 8154*z^30 + 5556*z^32 + 9972*z^34 - 35152*z^36 + 11992*z^38 - 37920*z^40 - 35856*z^42 + 47488*z^44 - 3888*z^46 + 103264*z^48 + 45344*z^50 - 12608*z^52 + 19520*z^54 - 30336*z^56 + 11072*z^58 - 35328*z^60 - 28160*z^62 - 84480*z^64 - 56832*z^66 + 12288*z^68 + 24576*z^70 + 40960*z^72 + 8192*z^74 + 16384*z^76)/
(-1 + 6*z^4 + 64*z^8 - 200*z^12 - 1000*z^16 + 3016*z^20 + 3488*z^24 - 24256*z^28 + 23776*z^32 + 104168*z^36 - 203408*z^40 - 184704*z^44 + 443392*z^48 + 14336*z^52 - 151296*z^56 + 145920*z^60 - 263424*z^64 + 317440*z^68 + 36864*z^72 - 966656*z^76 + 573440*z^80 + 131072*z^84)).

Extensions

More terms from R. J. Mathar, Oct 09 2010
Showing 1-1 of 1 results.