cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169801 a(n) = ((n-1)^2*n^2*(n+1)^2)/6 - 2*Sum_{l=2..n}Sum_{k=2..n}(n-k+1)*(n-l+1)*(k-1)*(l-1).

Original entry on oeis.org

0, 0, 4, 64, 400, 1600, 4900, 12544, 28224, 57600, 108900, 193600, 327184, 529984, 828100, 1254400, 1849600, 2663424, 3755844, 5198400, 7075600, 9486400, 12545764, 16386304, 21160000, 27040000, 34222500, 42928704, 53406864, 65934400, 80820100, 98406400
Offset: 0

Views

Author

N. J. A. Sloane, May 19 2010, May 22 2010

Keywords

Comments

Created in an attempt to repair a formula in A045996, which however turned out to be correct after all.

Programs

  • Mathematica
    f[n_] := ((n - 1)^2*n^2*(n + 1)^2)/6 - 2*Sum[(n - k + 1)*(n - l + 1)*(k - 1) (l - 1), {k, 2, n}, {l, 2, n}]; Array[f, 31] (* Robert G. Wilson v, May 23 2010 *)

Formula

a(n) = A099764(n-1) - 2*Sum_{l=2..n}Sum_{k=2..n}(n-k+1)*(n-l+1)*(k-1)*(l-1) = A099764(n-1)/9 = 4*A001249(n-2). - R. J. Mathar, May 23 2010
G.f.: 4*x^2*(1+x)*(x^2+8*x+1)/(1-x)^7. - R. J. Mathar, May 23 2010