This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169873 #15 May 02 2024 09:47:28 %S A169873 6,10,18,33,53,97,172,321,603,1153,2227,4353,8553,16897,33491,66561, %T A169873 132519,264193,527183,1052673,2102943,4202497,8400192,16793601, %U A169873 33577603,67141633,134264067,268500993,536963592,1073872897,2147669011,4295229441,8590305319,17180393473,34360479823 %N A169873 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_2^n. %D A169873 J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. %H A169873 Robin Visser, <a href="/A169873/b169873.txt">Table of n, a(n) for n = 1..3000</a> %H A169873 Jean-Pierre Serre, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k55351747/f35.item">Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini</a>, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 9, 397-402. %H A169873 Gerard van der Geer et al., <a href="http://www.manypoints.org">Tables of curves with many points</a> %H A169873 Gerard van der Geer and Marcel van der Vlugt, <a href="https://doi.org/10.1090/S0025-5718-99-01143-6">Tables of curves with many points</a>, Math. Comp. 69 (2000) 797-810. %o A169873 (Sage) %o A169873 def a(n): %o A169873 if n==2: return 10 %o A169873 elif (n%2 == 0): return 2^n + 1 + 2^(n/2+2) %o A169873 elif ((floor(2^(n/2+1))%2 == 0) or (2^n-1).is_square() %o A169873 or (4*2^n-3).is_square() or (4*2^n-7).is_square()): %o A169873 if (frac(2^(n/2+1)) > ((sqrt(5)-1)/2)): return 2^n + 2*floor(2^(n/2+1)) %o A169873 else: return 2^n + 2*floor(2^(n/2+1)) - 1 %o A169873 else: return 2^n + 1 + 2*floor(2^(n/2+1)) # _Robin Visser_, Oct 01 2023 %Y A169873 Cf. A005525, A169869-A169883. %K A169873 nonn %O A169873 1,1 %A A169873 _N. J. A. Sloane_, Jul 05 2010 %E A169873 More terms from _Robin Visser_, Oct 01 2023