This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169878 #15 May 02 2024 09:47:24 %S A169878 8,20,48,118,306,838,2372,6886,20244,60022,178830,534358,1599374, %T A169878 4791718,14364057,43072966,129185618,387499222,1162397834,3487020598, %U A169878 10460762306,31381768198,94144406138,282431662246,847292291373,2541872205622,7625608530780,22876811586838,68630410502264 %N A169878 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_3^n. %D A169878 J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. %H A169878 Robin Visser, <a href="/A169878/b169878.txt">Table of n, a(n) for n = 1..2000</a> %H A169878 Jean-Pierre Serre, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k55351747/f35.item">Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini</a>, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 9, 397-402. %H A169878 Gerard van der Geer et al., <a href="http://www.manypoints.org">Tables of curves with many points</a> %H A169878 Gerard van der Geer and Marcel van der Vlugt, <a href="https://doi.org/10.1090/S0025-5718-99-01143-6">Tables of curves with many points</a>, Math. Comp. 69 (2000) 797-810. %o A169878 (Sage) %o A169878 def a(n): %o A169878 if n==2: return 20 %o A169878 elif (n%2 == 0): return 3^n + 1 + 4*3^(n/2) %o A169878 elif ((floor(2*3^(n/2))%3 == 0) or (3^n-1).is_square() %o A169878 or (4*3^n-3).is_square() or (4*3^n-7).is_square()): %o A169878 if (frac(2*3^(n/2)) > ((sqrt(5)-1)/2)): return 3^n + 2*floor(2*3^(n/2)) %o A169878 else: return 3^n + 2*floor(2*3^(n/2)) - 1 %o A169878 else: return 3^n + 1 + 2*floor(2*3^(n/2)) # _Robin Visser_, Oct 01 2023 %Y A169878 Cf. A005525, A169869-A169883. %K A169878 nonn %O A169878 1,1 %A A169878 _N. J. A. Sloane_, Jul 05 2010 %E A169878 More terms from _Robin Visser_, Oct 01 2023