cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169880 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_5^n.

This page as a plain text file.
%I A169880 #10 Aug 17 2023 20:48:26
%S A169880 10,36,148,676,3237,15876,78685,391876,1955920,9771876,48842100,
%T A169880 244171876,1220773003,6103671876,30517927510,152588671876,
%U A169880 762941200054,3814701171876,19073495062765,95367451171876,476837201876328,2384185888671876,11920929173444139,59604645263671876
%N A169880 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_5^n.
%H A169880 Robin Visser, <a href="/A169880/b169880.txt">Table of n, a(n) for n = 1..1400</a>
%H A169880 Max Deuring, <a href="https://doi.org/10.1007/BF02940746">Die Typen der Multiplikatorenringe elliptischer Funktionenkörper</a>, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.
%H A169880 Gerard van der Geer et al., <a href="http://www.manypoints.org">Tables of curves with many points</a>
%H A169880 Gerard van der Geer and Marcel van der Vlugt, <a href="https://doi.org/10.1090/S0025-5718-99-01143-6">Tables of curves with many points</a>, Math. Comp. 69 (2000) 797-810.
%H A169880 W. C. Waterhouse, <a href="https://doi.org/10.24033/asens.1183">Abelian varieties over finite fields</a>, Ann Sci. E.N.S., (4) 2 (1969), 521-560.
%F A169880 a(n) = 5^n + 1 + floor(2*5^(n/2)) if 5 does not divide floor(2*5^(n/2)), n is even, or n = 1. Otherwise a(n) = 5^n + floor(2*5^(n/2)) [Deuring-Waterhouse]. - _Robin Visser_, Aug 17 2023
%o A169880 (Sage)
%o A169880 def a(n):
%o A169880     if (n==1) or (n%2 == 0) or (floor(2*5^(n/2))%5 != 0):
%o A169880         return 5^n + 1 + floor(2*5^(n/2))
%o A169880     else:
%o A169880         return 5^n + floor(2*5^(n/2))  # _Robin Visser_, Aug 17 2023
%Y A169880 Cf. A005523, A169869-A169883.
%K A169880 nonn
%O A169880 1,1
%A A169880 _N. J. A. Sloane_, Jul 05 2010
%E A169880 More terms from _Robin Visser_, Aug 17 2023