This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169881 #15 May 02 2024 09:47:20 %S A169881 12,46,170,726,3348,16126,79244,393126,1958714,9778126,48856074, %T A169881 244203126,1220842880,6103828126,30518276895,152589453126, %U A169881 762942946982,3814705078126,19073503797404,95367470703126,476837245549530,2384185986328126,11920929391810152,59604645751953126,298023226060613260 %N A169881 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_5^n. %D A169881 J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. %H A169881 Robin Visser, <a href="/A169881/b169881.txt">Table of n, a(n) for n = 1..1400</a> %H A169881 Jean-Pierre Serre, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k55351747/f35.item">Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini</a>, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 9, 397-402. %H A169881 Gerard van der Geer et al., <a href="http://www.manypoints.org">Tables of curves with many points</a> %H A169881 Gerard van der Geer and Marcel van der Vlugt, <a href="https://doi.org/10.1090/S0025-5718-99-01143-6">Tables of curves with many points</a>, Math. Comp. 69 (2000) 797-810. %o A169881 (Sage) %o A169881 def a(n): %o A169881 if (n%2 == 0): return 5^n + 1 + 4*5^(n/2) %o A169881 elif ((floor(2*5^(n/2))%5 == 0) or (5^n-1).is_square() %o A169881 or (4*5^n-3).is_square() or (4*5^n-7).is_square()): %o A169881 if (frac(2*5^(n/2)) > ((sqrt(5)-1)/2)): return 5^n + 2*floor(2*5^(n/2)) %o A169881 else: return 5^n + 2*floor(2*5^(n/2)) - 1 %o A169881 else: return 5^n + 1 + 2*floor(2*5^(n/2)) # _Robin Visser_, Oct 01 2023 %Y A169881 Cf. A005525, A169869-A169883. %K A169881 nonn %O A169881 1,1 %A A169881 _N. J. A. Sloane_, Jul 05 2010 %E A169881 More terms from _Robin Visser_, Oct 01 2023