cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169940 Consider the 2^(n-1) monic polynomials f(x) with coefficients 0 or 1, degree n and f(0)=1. Sequence gives triangle read by rows, in which T(n,k) (n>=1) is the number of such polynomials of thickness k (2 <= k <= n+1).

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 3, 3, 1, 1, 5, 4, 6, 0, 1, 7, 7, 10, 6, 1, 1, 13, 8, 27, 6, 9, 0, 1, 15, 21, 41, 23, 17, 9, 1, 1, 27, 20, 98, 34, 56, 8, 12, 0, 1, 25, 53, 148, 96, 104, 50, 22, 12, 1, 1, 45, 56, 325, 116, 294, 66, 96, 10, 15, 0, 1, 59, 89, 487, 319, 518, 262, 184, 86
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

The thickness of a polynomial f(x) is the magnitude of the largest coefficient in the expansion of f(x)^2.

Examples

			Triangle begins:
[1]
[1, 1]
[3, 0, 1]
[3, 3, 1, 1]
[5, 4, 6, 0, 1]
[7, 7, 10, 6, 1, 1]
[13, 8, 27, 6, 9, 0, 1]
[15, 21, 41, 23, 17, 9, 1, 1]
[27, 20, 98, 34, 56, 8, 12, 0, 1]
[25, 53, 148, 96, 104, 50, 22, 12, 1, 1]
[45, 56, 325, 116, 294, 66, 96, 10, 15, 0, 1]
[59, 89, 487, 319, 518, 262, 184, 86, 27, 15, 1, 1]
[89, 112, 942, 434, 1279, 346, 608, 112, 143, 12, 18, 0, 1]
[103, 197, 1348, 1042, 2181, 1153, 1166, 528, 291, 131, 32, 18, 1, 1]
[163, 220, 2613, 1320, 4981, 1568, 3313, 720, 1083, 168, 199, 14, 21, 0, 1]
...
For n=3 there are four polynomials x^3+1, x^3+x+1, x^3+x^2+1, x^3+x^2+x+1. Their squares are x^6+2*x^3+1, x^6+2*x^4+2*x^3+x^2+2*x+1, x^6+2*x^5+2*x^3+x^4+2*x^2+1 and x^6+2*x^5+3*x^4+4*x^3+3*x^2+2*x+1. Their thicknesses are 2,2,2,4. So T(3,2)=3, T(3,3)=0, T(3,4)=1.
The next 15 rows of the triangle are:
[187, 397, 3693, 2849, 8393, 4499, 6123, 2873, 2157, 939, 413, 185, 37, 21, 1, 1]
[281, 456, 6672, 3854, 17730, 6404, 15634, 4056, 6864, 1316, 1730, 234, 264, 16, 24, 0, 1]
[313, 711, 9458, 7940, 28938, 16432, 28534, 13398, 13488, 5906, 3568, 1514, 556, 248, 42, 24, 1, 1]
[469, 850, 16483, 10670, 58520, 23610, 67290, 19842, 37934, 8502, 12540, 2158, 2582, 310, 338, 18, 27, 0, 1]
[533, 1347, 22903, 20511, 94574, 55510, 120550, 57880, 73288, 32006, 25552, 10754, 5484, 2284, 716, 320, 47, 27, 1, 1]
[835, 1428, 39252, 27560, 183225, 80676, 267894, 86894, 189156, 48572, 78530, 15786, 20948, 3292, 3660, 396, 421, 20, 30, 0, 1]
[873, 2303, 53874, 51088, 290401, 179485, 469928, 232610, 359532, 158100, 158248, 66158, 43924, 18026, 7948, 3274, 895, 401, 52, 30, 1, 1]
[1319, 2642, 89947, 68614, 545421, 260616, 998433, 353278, 868696, 244418, 442240, 101860, 146260, 26948, 32804, 4750, 4997, 492, 513, 22, 33, 0, 1]
[1551, 3777, 123653, 121487, 853975, 549189, 1725367, 876575, 1621096, 725016, 877388, 365898, 304048, 123536, 70436, 28400, 11029, 4511, 1093, 491, 57, 33, 1, 1]
[2093, 4636, 200706, 164644, 1558400, 798552, 3526978, 1340828, 3719207, 1137278, 2280612, 580200, 912118, 192574, 251928, 43126, 48875, 6572, 6616, 598, 614, 24, 36, 0, 1]
[2347, 6693, 271092, 285484, 2403986, 1616482, 5997220, 3147524, 6830683, 3108825, 4457858, 1874174, 1873798, 754630, 537286, 213744, 107163, 42619, 14802, 6022, 1310, 590, 62, 36, 1, 1]
[3477, 7550, 438403, 379800, 4292926, 2346592, 11882630, 4821002, 15021379, 4920018, 10948081, 3008372, 5200638, 1217690, 1719966, 336912, 408989, 65534, 70061, 8794, 8546, 714, 724, 26, 39, 0, 1]
[3881, 11109, 585071, 644971, 6538688, 4594134, 19912060, 10801102, 27155069, 12640031, 21054795, 8950909, 10529720, 4248966, 3632012, 1428638, 890393, 348839, 156301, 61531, 19322, 7834, 1546, 698, 67, 39, 1, 1]
[5363, 12876, 927332, 860898, 11437031, 6656592, 38401950, 16551444, 57664535, 20086508, 49373458, 14542512, 27487209, 6959998, 10699424, 2334678, 3027695, 555714, 633348, 95568, 97301, 11454, 10814, 840, 843, 28, 42, 0, 1]
[5871, 17965, 1239392, 1419768, 17273147, 12579603, 63611068, 35500374, 102865259, 48877549, 93622166, 40321020, 54860417, 22275601, 22298854, 8743268, 6540369, 2528691, 1403386, 543422, 220305, 86061, 24650, 9974, 1801, 815, 72, 42, 1, 1]
		

Crossrefs

Related to thickness: A169940-A169954, A061909.

Programs

  • Mathematica
    row[n_] := Module[{dd, xx, mm}, dd = Join[{1}, PadLeft[IntegerDigits[#, 2], n-1], {1}]& /@ Range[0, 2^(n-1) - 1]; xx = (((x^Range[n, 0, -1]).#)& /@ dd)^2 // Expand; mm = Max[CoefficientList[#, x]]& /@ xx; Table[Count[mm, k], {k, 2, n+1}]]; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Oct 10 2017 *)
  • PARI
    T(n)={ my(c=vector(n)); forstep(j=1<M. F. Hasler, Nov 12 2010

Formula

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
From M. F. Hasler, Nov 12 2010: (Start)
T(n,n+1) = 1 = T(2m,2m), T(2m+1,2m+1) = 0,
T(n+1,n) = (3, 3, 6, 6, 9, 9, ...) = 3*[n/2-1] = A168237(n) (n>2),
T(2m+2,2m) = (3, 10, 17, 22, 27, 32, 37, ...) = 5m+2 for m>2,
T(2m+3,2m+1) = (4, 6, 8, 10, ...) = 2m+2 for m>0,
T(2m+3,2m) = (5, 27, 56, 96, 143, 199, 264, ...) = m(9m+13)/2-2 for m>3,
T(2m+4,2m+1) = (7, 23, 50, 86, 131, 185, 248, ...) = 9m(m+1)/2-4 for m>1,
... (End)

Extensions

Rows 16-30 from Nathaniel Johnston, Nov 12 2010