cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169942 Number of Golomb rulers of length n.

This page as a plain text file.
%I A169942 #42 Feb 16 2025 08:33:11
%S A169942 1,1,3,3,5,7,13,15,27,25,45,59,89,103,163,187,281,313,469,533,835,873,
%T A169942 1319,1551,2093,2347,3477,3881,5363,5871,8267,9443,12887,14069,19229,
%U A169942 22113,29359,32229,44127,48659,64789,71167,94625,105699,139119,151145,199657
%N A169942 Number of Golomb rulers of length n.
%C A169942 Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
%C A169942 Leading entry in row n of triangle in A169940. Also the number of Sidon sets A with min(A) = 0 and max(A) = n. Odd for all n since {0,n} is the only symmetric Golomb ruler, and reversal preserves the Golomb property. Bounded from above by A032020 since the ruler {0 < r_1 < ... < r_t < n} gives rise to a composition of n: (r_1 - 0, r_2 - r_1, ... , n - r_t) with distinct parts. - _Tomas Boothby_, May 15 2012
%C A169942 Also the number of compositions of n such that every restriction to a subinterval has a different sum. This is a stronger condition than all distinct consecutive subsequences having a different sum (cf. A325676). - _Gus Wiseman_, May 16 2019
%H A169942 Fausto A. C. Cariboni, <a href="/A169942/b169942.txt">Table of n, a(n) for n = 1..99</a>
%H A169942 T. Pham, <a href="http://math.sfsu.edu/beck/teach/masters/tu.pdf">Enumeration of Golomb Rulers</a> (Master's thesis), San Francisco State U., 2011.
%H A169942 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GolombRuler.html">Golomb Ruler.</a>
%H A169942 <a href="/index/Ca#CARRYLESS">Index entries for sequences related to carryless arithmetic</a>
%H A169942 <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a>
%F A169942 a(n) = A169952(n) - A169952(n-1) for n>1. - _Andrew Howroyd_, Jul 09 2017
%e A169942 For n=2, there is one Golomb Ruler: {0,2}.  For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - _Tomas Boothby_, May 15 2012
%e A169942 From _Gus Wiseman_, May 16 2019: (Start)
%e A169942 The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum:
%e A169942   (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)
%e A169942             (12)  (13)  (14)  (15)   (16)   (17)
%e A169942             (21)  (31)  (23)  (24)   (25)   (26)
%e A169942                         (32)  (42)   (34)   (35)
%e A169942                         (41)  (51)   (43)   (53)
%e A169942                               (132)  (52)   (62)
%e A169942                               (231)  (61)   (71)
%e A169942                                      (124)  (125)
%e A169942                                      (142)  (143)
%e A169942                                      (214)  (152)
%e A169942                                      (241)  (215)
%e A169942                                      (412)  (251)
%e A169942                                      (421)  (341)
%e A169942                                             (512)
%e A169942                                             (521)
%e A169942 (End)
%t A169942 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{___,s__,___}:>Plus[s]]&]],{n,15}] (* _Gus Wiseman_, May 16 2019 *)
%o A169942 (Sage)
%o A169942 def A169942(n):
%o A169942     R = QQ['x']
%o A169942     return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2)
%o A169942 [A169942(n) for n in range(1,8)]
%o A169942 # _Tomas Boothby_, May 15 2012
%Y A169942 Related to thickness: A169940-A169954, A061909.
%Y A169942 Related to Golomb rulers: A036501, A054578, A143823.
%Y A169942 Row sums of A325677.
%Y A169942 Cf. A000079, A103295, A103300, A108917, A143824, A325466, A325545, A325676, A325678, A325679, A325683, A325686.
%K A169942 nonn
%O A169942 1,3
%A A169942 _N. J. A. Sloane_, Aug 01 2010
%E A169942 a(15)-a(30) from _Nathaniel Johnston_, Nov 12 2011
%E A169942 a(31)-a(50) from _Tomas Boothby_, May 15 2012