This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169959 #34 Aug 20 2025 10:42:55 %S A169959 1,10,190,4060,91390,2118760,50063860,1198774720,28987537150, %T A169959 706252528630,17310309456440,426342151127100,10542859559688820, %U A169959 261594860525768000,6509613950241656640,162392216278033616560,4059949873964357469950,101696990867999141755140 %N A169959 a(n) = binomial(10*n, n). %H A169959 Vincenzo Librandi, <a href="/A169959/b169959.txt">Table of n, a(n) for n = 0..115</a> %F A169959 a(n) = C(10*n-1, n-1)*C(100*n^2, 2)/(3*n*C(10*n+1, 3)), n > 0. - _Gary Detlefs_, Jan 02 2014 %F A169959 From _Peter Bala_, Feb 21 2022: (Start) %F A169959 The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 9*A(x))^9 + (10^10)*x*A(x)^10 = 0. %F A169959 Sum_{n >= 1} a(n)*( x*(9*x + 10)^9/(10^10*(1 + x)^10) )^n = x. (End) %t A169959 A169959[n_] := Binomial[10*n, n]; Array[A169959, 20, 0] (* _Paolo Xausa_, Aug 20 2025 *) %o A169959 (Magma) [Binomial(10*n, n): n in [0..50]]; // _Vincenzo Librandi_, Apr 21 2011 %Y A169959 binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12). %K A169959 nonn %O A169959 0,2 %A A169959 _N. J. A. Sloane_, Aug 07 2010