This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A169960 #23 Sep 08 2022 08:45:49 %S A169960 1,11,231,5456,135751,3478761,90858768,2404808340,64276915527, %T A169960 1731030945644,46897636623981,1276749965026536,34898565177533200, %U A169960 957150015393611193,26327386978706181060,725971390105457325456,20062118235172477959495,555476984964439251664995 %N A169960 a(n) = binomial(11*n,n). %H A169960 Vincenzo Librandi, <a href="/A169960/b169960.txt">Table of n, a(n) for n = 0..200</a> %F A169960 a(n) = C(11*n-1,n-1)*C(121*n^2,2)/(3*n*C(11*n+1,3)), n>0. - _Gary Detlefs_, Jan 02 2014 %F A169960 From _Peter Bala_, Feb 21 2022: (Start) %F A169960 The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 10*A(x))^10 + (11^11)*x*A(x)^11 = 0. %F A169960 Sum_{n >= 1} a(n)*( x*(10*x + 11)^10/(11^11*(1 + x)^11) )^n = x. (End) %t A169960 Table[Binomial[11 n, n], {n, 0, 20}] (* _Vincenzo Librandi_, Aug 07 2014 *) %o A169960 (Magma) [Binomial(11*n, n): n in [0..20]]; // _Vincenzo Librandi_, Aug 07 2014 %Y A169960 binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12). %K A169960 nonn %O A169960 0,2 %A A169960 _N. J. A. Sloane_, Aug 07 2010