cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169969 Locations of row maxima in "crushed" version of Stern's diatomic array.

This page as a plain text file.
%I A169969 #60 May 19 2025 11:26:12
%S A169969 1,3,5,7,11,13,21,27,43,53,85,107,171,213,341,427,683,853,1365,1707,
%T A169969 2731,3413,5461,6827,10923,13653,21845,27307,43691,54613,87381,109227,
%U A169969 174763,218453,349525,436907,699051,873813,1398101,1747627,2796203,3495253,5592405
%N A169969 Locations of row maxima in "crushed" version of Stern's diatomic array.
%C A169969 From _Michel Marcus_, Jan 22 2015: (Start)
%C A169969 The Stern's diatomic array begins (see A049456).
%C A169969   1...............................1
%C A169969   1...............2...............1
%C A169969   1.......3.......2.......3.......1
%C A169969   1...4...3...5...2...5...3...4...1
%C A169969   1.5.4.7.3.8.5.7.2.7.5.8.3.7.4.5.1
%C A169969   ...
%C A169969 The "crushed" version is obtained by removing the right column, and then squeezing everything to the left.
%C A169969   1;
%C A169969   1, 2;
%C A169969   1, 3, 2, 3;
%C A169969   1, 4, 3, 5, 2, 5, 3, 4;
%C A169969   1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5;
%C A169969   ...
%C A169969 This gives sequence 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, ... (cf. A002487).
%C A169969 The "crushed" array row maxima are: 1, 2, 3, 5, 8, ... (cf. A000045).
%C A169969 The indices of these values in A002487 are 1, 3, 5, 7, 11, ... : this sequence.
%C A169969 Note, for instance, that for 3rd row, the maximum which is 3, appears twice, at indices 5 and 7, giving 2 terms for this sequence.
%C A169969 (End)
%H A169969 S. Northshield, <a href="http://dx.doi.org/10.4169/000298910X496714">Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ...</a>, Amer. Math. Monthly, 117 (2010), 581-598.
%H A169969 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,2).
%F A169969 a(2n+1) + a(2n+2) = 3*2^(n+1), n>0 . - _Yosu Yurramendi_, Jun 29 2016
%F A169969 a(2n+3) = 3*2^(n+1) - a(n); a(2n+4) = 3*2^(n+1) + a(n), n>=0, a(0)=0 (new term), a(1)=1, a(2)=3 . - _Yosu Yurramendi_, Jun 29 2016
%F A169969 G.f.: x*(1 + 3*x + 4*x^2 + 4*x^3 + 4*x^4)/((1 + x^2)*(1 - 2*x^2)). - _Ilya Gutkovskiy_, Jun 29 2016
%F A169969 For n>1, a(n) = (2^(n/2 - 1)*(5 + 4*sqrt(2) + (-1)^n*(5 - 4*sqrt(2))) + cos(Pi*n/2) + sin(Pi*n/2))/3. - _Vaclav Kotesovec_, Jun 30 2016
%F A169969 a(2n) = a(2n-7) + 3*2^(n-1); a(2n-1) = a(2n-7) - 3*2^(n-1), n>=5 . - _Yosu Yurramendi_, Jul 06 2016
%F A169969 a(2n-1) = A168642(n), n>0; a(2n) = A048573(n), n>0; a(2n-1) = A026644(n) + 1, n>1; a(2n) = A084170(n) + 1, n>0 . - _Yosu Yurramendi_, Dec 11 2016
%e A169969 G.f. = x + 3*x^2 + 5*x^3 + 7*x^4 + 11*x^5 + 13*x^6 + 21*x^7 + 27*x^8 + 43*x^9 + ...
%t A169969 a[n_] := a[n] = If[n <= 5, {1, 3, 5, 7, 11}[[n]], a[n-2] + 2a[n-4]]; Array[a, 42] (* _Jean-François Alcover_, Dec 11 2016 *)
%o A169969 (PARI) fusc(n)=local(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b; \\ from A002487
%o A169969 lista(nn) = {nb = 2^(nn+1)-1; vall = vector(nb, n, fusc(n)); for (n=1, nn, vmax = 0; for (j=2^(n-1), 2^n-1, if (vall[j] > vmax, vmax = vall[j]);); for (j=2^(n-1), 2^n-1, if (vall[j] == vmax, print1(j, ", "));););} \\ _Michel Marcus_, Jan 22 2015
%Y A169969 Cf. A000079, A026644, A048573, A049456, A084170, A168642.
%K A169969 nonn,easy
%O A169969 1,2
%A A169969 _N. J. A. Sloane_, Aug 08 2010
%E A169969 More terms from _Michel Marcus_, Jan 22 2015