cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169975 Expansion of Product_{i>=0} (1 + x^(4*i+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 3, 1, 1, 4, 4, 1, 1, 4, 5, 2, 1, 5, 7, 3, 1, 5, 8, 5, 2, 6, 10, 6, 2, 6, 12, 9, 3, 7, 14, 11, 4, 7, 16, 15, 6, 8, 19, 18, 8, 9, 21, 23, 11, 10, 24, 27, 14, 11, 27, 34, 19, 13, 30, 39, 24, 15, 33, 47, 31, 18, 37, 54, 38
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Number of partitions into distinct parts of the form 4*k+1.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k + b)), then a(n) ~ exp(Pi*sqrt(n/(3*a))) / (2^(1 + b/a) * (3*a)^(1/4) * n^(3/4)) [Meinardus, 1954]. - Vaclav Kotesovec, Aug 26 2015
Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 4] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Sum_{n>=0} (x^(2*n^2 - n) / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Mar 10 2011
G.f.: G(0)/x where G(k) = 1 - 1/(1 - 1/(1 - 1/(1+(x)^(4*k+1))/G(k+1) )); (recursively defined continued fraction, see A006950). - Sergei N. Gladkovskii, Jan 28 2013
a(n) ~ exp(Pi*sqrt(n)/(2*sqrt(3))) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 18 2017