cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170045 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.

This page as a plain text file.
%I A170045 #6 Nov 26 2016 09:46:58
%S A170045 1,36,1260,44100,1543500,54022500,1890787500,66177562500,
%T A170045 2316214687500,81067514062500,2837362992187500,99307704726562500,
%U A170045 3475769665429687500,121651938290039062500,4257817840151367187500,149023624405297851562500
%N A170045 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.
%C A170045 The initial terms coincide with those of A170755, although the two sequences are eventually different.
%C A170045 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170045 <a href="/index/Rec#order_36">Index entries for linear recurrences with constant coefficients</a>, signature (34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, -595).
%F A170045 G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
%F A170045 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
%F A170045 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
%F A170045 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
%F A170045 + 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^36 - 34*t^35 - 34*t^34 - 34*t^33 -
%F A170045 34*t^32 - 34*t^31 - 34*t^30 - 34*t^29 - 34*t^28 - 34*t^27 - 34*t^26 -
%F A170045 34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 - 34*t^21 - 34*t^20 - 34*t^19 -
%F A170045 34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 -
%F A170045 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4
%F A170045 - 34*t^3 - 34*t^2 - 34*t + 1)
%K A170045 nonn
%O A170045 0,2
%A A170045 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009