cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170050 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.

This page as a plain text file.
%I A170050 #6 Nov 26 2016 09:48:17
%S A170050 1,41,1640,65600,2624000,104960000,4198400000,167936000000,
%T A170050 6717440000000,268697600000000,10747904000000000,429916160000000000,
%U A170050 17196646400000000000,687865856000000000000,27514634240000000000000
%N A170050 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.
%C A170050 The initial terms coincide with those of A170760, although the two sequences are eventually different.
%C A170050 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170050 <a href="/index/Rec#order_36">Index entries for linear recurrences with constant coefficients</a>, signature (39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, -780).
%F A170050 G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
%F A170050 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
%F A170050 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
%F A170050 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
%F A170050 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^36 - 39*t^35 - 39*t^34 - 39*t^33 -
%F A170050 39*t^32 - 39*t^31 - 39*t^30 - 39*t^29 - 39*t^28 - 39*t^27 - 39*t^26 -
%F A170050 39*t^25 - 39*t^24 - 39*t^23 - 39*t^22 - 39*t^21 - 39*t^20 - 39*t^19 -
%F A170050 39*t^18 - 39*t^17 - 39*t^16 - 39*t^15 - 39*t^14 - 39*t^13 - 39*t^12 -
%F A170050 39*t^11 - 39*t^10 - 39*t^9 - 39*t^8 - 39*t^7 - 39*t^6 - 39*t^5 - 39*t^4
%F A170050 - 39*t^3 - 39*t^2 - 39*t + 1)
%K A170050 nonn
%O A170050 0,2
%A A170050 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009