cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170089 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

This page as a plain text file.
%I A170089 #6 Nov 26 2016 10:06:17
%S A170089 1,32,992,30752,953312,29552672,916132832,28400117792,880403651552,
%T A170089 27292513198112,846067909141472,26228105183385632,813071260684954592,
%U A170089 25205209081233592352,781361481518241362912,24222205927065482250272
%N A170089 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.
%C A170089 The initial terms coincide with those of A170751, although the two sequences are eventually different.
%C A170089 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170089 <a href="/index/Rec#order_37">Index entries for linear recurrences with constant coefficients</a>, signature (30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, -465).
%F A170089 G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
%F A170089 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
%F A170089 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
%F A170089 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
%F A170089 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^37 - 30*t^36 - 30*t^35 -
%F A170089 30*t^34 - 30*t^33 - 30*t^32 - 30*t^31 - 30*t^30 - 30*t^29 - 30*t^28 -
%F A170089 30*t^27 - 30*t^26 - 30*t^25 - 30*t^24 - 30*t^23 - 30*t^22 - 30*t^21 -
%F A170089 30*t^20 - 30*t^19 - 30*t^18 - 30*t^17 - 30*t^16 - 30*t^15 - 30*t^14 -
%F A170089 30*t^13 - 30*t^12 - 30*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 -
%F A170089 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1)
%K A170089 nonn
%O A170089 0,2
%A A170089 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009