cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170104 Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

This page as a plain text file.
%I A170104 #6 Nov 26 2016 10:13:03
%S A170104 1,47,2162,99452,4574792,210440432,9680259872,445291954112,
%T A170104 20483429889152,942237774900992,43342937645445632,1993775131690499072,
%U A170104 91713656057762957312,4218828178657096036352,194066096218226417672192
%N A170104 Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.
%C A170104 The initial terms coincide with those of A170766, although the two sequences are eventually different.
%C A170104 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170104 <a href="/index/Rec#order_37">Index entries for linear recurrences with constant coefficients</a>, signature (45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, -1035).
%F A170104 G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
%F A170104 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
%F A170104 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
%F A170104 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
%F A170104 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^37 - 45*t^36 - 45*t^35
%F A170104 - 45*t^34 - 45*t^33 - 45*t^32 - 45*t^31 - 45*t^30 - 45*t^29 - 45*t^28 -
%F A170104 45*t^27 - 45*t^26 - 45*t^25 - 45*t^24 - 45*t^23 - 45*t^22 - 45*t^21 -
%F A170104 45*t^20 - 45*t^19 - 45*t^18 - 45*t^17 - 45*t^16 - 45*t^15 - 45*t^14 -
%F A170104 45*t^13 - 45*t^12 - 45*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 -
%F A170104 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1)
%K A170104 nonn
%O A170104 0,2
%A A170104 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009