cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170126 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

This page as a plain text file.
%I A170126 #6 May 14 2017 17:34:19
%S A170126 1,21,420,8400,168000,3360000,67200000,1344000000,26880000000,
%T A170126 537600000000,10752000000000,215040000000000,4300800000000000,
%U A170126 86016000000000000,1720320000000000000,34406400000000000000
%N A170126 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.
%C A170126 The initial terms coincide with those of A170740, although the two sequences are eventually different.
%C A170126 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170126 <a href="/index/Rec#order_38">Index entries for linear recurrences with constant coefficients</a>, signature (19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, -190).
%F A170126 G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
%F A170126 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
%F A170126 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
%F A170126 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
%F A170126 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^38 - 19*t^37 -
%F A170126 19*t^36 - 19*t^35 - 19*t^34 - 19*t^33 - 19*t^32 - 19*t^31 - 19*t^30 -
%F A170126 19*t^29 - 19*t^28 - 19*t^27 - 19*t^26 - 19*t^25 - 19*t^24 - 19*t^23 -
%F A170126 19*t^22 - 19*t^21 - 19*t^20 - 19*t^19 - 19*t^18 - 19*t^17 - 19*t^16 -
%F A170126 19*t^15 - 19*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 -
%F A170126 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1)
%K A170126 nonn
%O A170126 0,2
%A A170126 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009