cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170129 Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

This page as a plain text file.
%I A170129 #6 May 14 2017 17:35:08
%S A170129 1,24,552,12696,292008,6716184,154472232,3552861336,81715810728,
%T A170129 1879463646744,43227663875112,994236269127576,22867434189934248,
%U A170129 525950986368487704,12096872686475217192,278228071788929995416
%N A170129 Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.
%C A170129 The initial terms coincide with those of A170743, although the two sequences are eventually different.
%C A170129 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170129 <a href="/index/Rec#order_38">Index entries for linear recurrences with constant coefficients</a>, signature (22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, -253).
%F A170129 G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
%F A170129 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
%F A170129 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
%F A170129 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
%F A170129 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(253*t^38 - 22*t^37 -
%F A170129 22*t^36 - 22*t^35 - 22*t^34 - 22*t^33 - 22*t^32 - 22*t^31 - 22*t^30 -
%F A170129 22*t^29 - 22*t^28 - 22*t^27 - 22*t^26 - 22*t^25 - 22*t^24 - 22*t^23 -
%F A170129 22*t^22 - 22*t^21 - 22*t^20 - 22*t^19 - 22*t^18 - 22*t^17 - 22*t^16 -
%F A170129 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 -
%F A170129 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1)
%K A170129 nonn
%O A170129 0,2
%A A170129 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009