cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170365 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

This page as a plain text file.
%I A170365 #13 Nov 21 2016 19:21:00
%S A170365 1,20,380,7220,137180,2606420,49521980,940917620,17877434780,
%T A170365 339671260820,6453753955580,122621325156020,2329805177964380,
%U A170365 44266298381323220,841059669245141180,15980133715657682420
%N A170365 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.
%C A170365 The initial terms coincide with those of A170739, although the two sequences are eventually different.
%C A170365 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170365 Vincenzo Librandi, <a href="/A170365/b170365.txt">Table of n, a(n) for n = 0..200</a>
%H A170365 <a href="/index/Rec#order_43">Index entries for linear recurrences with constant coefficients</a>, signature (18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, -171).
%F A170365 G.f.: (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^43 - 18*t^42 - 18*t^41 - 18*t^40 - 18*t^39 - 18*t^38 - 18*t^37 - 18*t^36 - 18*t^35 - 18*t^34 - 18*t^33 - 18*t^32 - 18*t^31 - 18*t^30 - 18*t^29 - 18*t^28 - 18*t^27 - 18*t^26 - 18*t^25 - 18*t^24 - 18*t^23 - 18*t^22 - 18*t^21 - 18*t^20 - 18*t^19 - 18*t^18 - 18*t^17 - 18*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1)
%t A170365 With[{num=Total[2t^Range[42]]+t^43+1,den=Total[-18 t^Range[42]]+ 171t^43+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* _Harvey P. Dale_, Jan 14 2012 *)
%K A170365 nonn
%O A170365 0,2
%A A170365 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009