cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170368 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

This page as a plain text file.
%I A170368 #13 Nov 21 2016 19:23:52
%S A170368 1,23,506,11132,244904,5387888,118533536,2607737792,57370231424,
%T A170368 1262145091328,27767192009216,610878224202752,13439320932460544,
%U A170368 295665060514131968,6504631331310903296,143101889288839872512
%N A170368 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.
%C A170368 The initial terms coincide with those of A170742, although the two sequences are eventually different.
%C A170368 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170368 Vincenzo Librandi, <a href="/A170368/b170368.txt">Table of n, a(n) for n = 0..200</a>
%H A170368 <a href="/index/Rec#order_43">Index entries for linear recurrences with constant coefficients</a>, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
%F A170368 G.f.: (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^43 - 21*t^42 - 21*t^41 - 21*t^40 - 21*t^39 - 21*t^38 - 21*t^37 - 21*t^36 - 21*t^35 - 21*t^34 - 21*t^33 - 21*t^32 - 21*t^31 - 21*t^30 - 21*t^29 - 21*t^28 - 21*t^27 - 21*t^26 - 21*t^25 - 21*t^24 - 21*t^23 - 21*t^22 - 21*t^21 - 21*t^20 - 21*t^19 - 21*t^18 - 21*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
%t A170368 With[{num=Total[2t^Range[42]]+t^43+1,den=Total[-21 t^Range[42]]+231t^43+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* _Harvey P. Dale_, Feb 01 2014 *)
%K A170368 nonn
%O A170368 0,2
%A A170368 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009