This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A170520 #8 Jun 19 2022 12:46:27 %S A170520 1,31,930,27900,837000,25110000,753300000,22599000000,677970000000, %T A170520 20339100000000,610173000000000,18305190000000000,549155700000000000, %U A170520 16474671000000000000,494240130000000000000,14827203900000000000000 %N A170520 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^46 = I. %C A170520 The initial terms coincide with those of A170750, although the two sequences are eventually different. %C A170520 Computed with MAGMA using commands similar to those used to compute A154638. %H A170520 <a href="/index/Rec#order_46">Index entries for linear recurrences with constant coefficients</a>, signature (29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, -435). %F A170520 G.f. (t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + %F A170520 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + %F A170520 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + %F A170520 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + %F A170520 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + %F A170520 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^46 - 29*t^45 - %F A170520 29*t^44 - 29*t^43 - 29*t^42 - 29*t^41 - 29*t^40 - 29*t^39 - 29*t^38 - %F A170520 29*t^37 - 29*t^36 - 29*t^35 - 29*t^34 - 29*t^33 - 29*t^32 - 29*t^31 - %F A170520 29*t^30 - 29*t^29 - 29*t^28 - 29*t^27 - 29*t^26 - 29*t^25 - 29*t^24 - %F A170520 29*t^23 - 29*t^22 - 29*t^21 - 29*t^20 - 29*t^19 - 29*t^18 - 29*t^17 - %F A170520 29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - %F A170520 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - %F A170520 29*t + 1) %t A170520 coxG[{46,435,-29}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jun 19 2022 *) %K A170520 nonn %O A170520 0,2 %A A170520 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009