cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170552 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^47 = I.

This page as a plain text file.
%I A170552 #6 Nov 21 2016 12:50:16
%S A170552 1,15,210,2940,41160,576240,8067360,112943040,1581202560,22136835840,
%T A170552 309915701760,4338819824640,60743477544960,850408685629440,
%U A170552 11905721598812160,166680102383370240,2333521433367183360
%N A170552 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^47 = I.
%C A170552 The initial terms coincide with those of A170734, although the two sequences are eventually different.
%C A170552 Computed with MAGMA using commands similar to those used to compute A154638.
%H A170552 <a href="/index/Rec#order_47">Index entries for linear recurrences with constant coefficients</a>, signature (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, -91).
%F A170552 G.f. (t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 +
%F A170552 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
%F A170552 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
%F A170552 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
%F A170552 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
%F A170552 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^47 -
%F A170552 13*t^46 - 13*t^45 - 13*t^44 - 13*t^43 - 13*t^42 - 13*t^41 - 13*t^40 -
%F A170552 13*t^39 - 13*t^38 - 13*t^37 - 13*t^36 - 13*t^35 - 13*t^34 - 13*t^33 -
%F A170552 13*t^32 - 13*t^31 - 13*t^30 - 13*t^29 - 13*t^28 - 13*t^27 - 13*t^26 -
%F A170552 13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 -
%F A170552 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 -
%F A170552 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4
%F A170552 - 13*t^3 - 13*t^2 - 13*t + 1)
%K A170552 nonn
%O A170552 0,2
%A A170552 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009