This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A170756 #17 Sep 08 2022 08:45:49 %S A170756 1,37,1332,47952,1726272,62145792,2237248512,80540946432, %T A170756 2899474071552,104381066575872,3757718396731392,135277862282330112, %U A170756 4870003042163884032,175320109517899825152,6311523942644393705472,227214861935198173396992 %N A170756 Expansion of g.f.: (1+x)/(1-36*x). %H A170756 G. C. Greubel, <a href="/A170756/b170756.txt">Table of n, a(n) for n = 0..639</a> %H A170756 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (36). %F A170756 a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*37^k. - _Philippe Deléham_, Dec 04 2009 %F A170756 E.g.f.: (1/36)*(37*exp(36*x) - 1). - _Stefano Spezia_, Oct 09 2019 %p A170756 k:=37; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # _G. C. Greubel_, Oct 09 2019 %t A170756 With[{k = 37}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* _G. C. Greubel_, Oct 09 2019 *) %o A170756 (PARI) vector(26, n, k=37; if(n==1, 1, k*(k-1)^(n-2))) \\ _G. C. Greubel_, Oct 09 2019 %o A170756 (Magma) k:=37; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // _G. C. Greubel_, Oct 09 2019 %o A170756 (Sage) k=37; [1]+[k*(k-1)^(n-1) for n in (1..25)] # _G. C. Greubel_, Oct 09 2019 %o A170756 (GAP) k:=37;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # _G. C. Greubel_, Oct 09 2019 %Y A170756 Cf. A003945. %K A170756 nonn,easy %O A170756 0,2 %A A170756 _N. J. A. Sloane_, Dec 04 2009