This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A170780 #27 Sep 08 2022 08:45:49 %S A170780 0,1,32896,21526641,2147516416,76294140625,1410555793536, %T A170780 16616468167201,140737496743936,926510115949281,5000000050000000, %U A170780 22974865038965521,92442129662509056,332708304999455281,1088976669642580096 %N A170780 a(n) = n^8*(n^8 + 1)/2. %C A170780 Number of unoriented rows of length 16 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=32896, there are 2^16=65536 oriented arrangements of two colors. Of these, 2^8=256 are achiral. That leaves (65536-256)/2=32640 chiral pairs. Adding achiral and chiral, we get 32896. - _Robert A. Russell_, Nov 13 2018 %H A170780 Vincenzo Librandi, <a href="/A170780/b170780.txt">Table of n, a(n) for n = 0..10000</a> %H A170780 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1). %F A170780 G.f.: (x + 32879*x^2 + 20967545*x^3 + 1786036695*x^4 + 42691617829* x^5 + 391057805899*x^6 + 1603741496717*x^7 + 3191399514435*x^8 + 3191399514435*x^9 + 1603741496717*x^10 + 391057805899*x^11 + 42691617829*x^12 + 1786036695*x^13 + 20967545*x^14 + 32879*x^15 + x^16) /(1-x)^17. - _G. C. Greubel_, Dec 05 2017 %F A170780 From _Robert A. Russell_, Nov 13 2018: (Start) %F A170780 a(n) = (A010804(n) + A001016(n)) / 2 = (n^16 + n^8) / 2. %F A170780 G.f.: (Sum_{j=1..16} S2(16,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..8} S2(8,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277. %F A170780 G.f.: x*Sum_{k=0..15} A145882(16,k) * x^k / (1-x)^17. %F A170780 E.g.f.: (Sum_{k=1..16} S2(16,k)*x^k + Sum_{k=1..8} S2(8,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277. %F A170780 For n>16, a(n) = Sum_{j=1..17} -binomial(j-18,j) * a(n-j). (End) %t A170780 Table[n^8*(n^8+1)/2, {n, 0, 30}] (* _G. C. Greubel_, Dec 05 2017 *) %o A170780 (Magma) [n^8*(n^8+1)/2: n in [0..30]]; // _Vincenzo Librandi_, Aug 26 2011 %o A170780 (PARI) for(n=0, 30, print1(n^8*(n^8+1)/2, ", ")) \\ _G. C. Greubel_, Dec 05 2017 %o A170780 (Sage) [n^8*(n^8+1)/2 for n in range(30)] # _G. C. Greubel_, Nov 15 2018 %o A170780 (GAP) List([0..30], n -> n^8*(n^8+1)/2); # _G. C. Greubel_, Nov 15 2018 %o A170780 (Python) for n in range(0,20): print(int(n**8*(n**8 + 1)/2), end=', ') # _Stefano Spezia_, Nov 15 2018 %Y A170780 Row 16 of A277504. %Y A170780 Cf. A010804 (oriented), A001016 (achiral). %K A170780 nonn,easy %O A170780 0,3 %A A170780 _N. J. A. Sloane_, Dec 11 2009