cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170796 a(n) = n^10*(n^4 + 1)/2.

This page as a plain text file.
%I A170796 #12 Sep 08 2022 08:45:49
%S A170796 0,1,8704,2421009,134742016,3056640625,39212315136,339252774049,
%T A170796 2199560126464,11440139619681,50005000000000,189887885503921,
%U A170796 641990190956544,1968757122095569,5556148040106496,14596751337890625
%N A170796 a(n) = n^10*(n^4 + 1)/2.
%H A170796 Vincenzo Librandi, <a href="/A170796/b170796.txt">Table of n, a(n) for n = 0..10000</a>
%H A170796 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
%F A170796 From _G. C. Greubel_, Oct 11 2019: (Start)
%F A170796 G.f.: x*(1 +8689*x +2290554*x^2 +99340346*x^3 +1285757375*x^4 +6420936303*x^5 +13986239532*x^6 +13986239532*x^7 +6420936303*x^8 +1285757375*x^9 +99340346*x^10 +2290554*x^11 +8689*x^12 +x^13)/(1-x)^15.
%F A170796 E.g.f.: x*(2 +8702*x +798300*x^2 +10425850*x^3 +40117560*x^4 +63459200*x^5 +49335160*x^6 +20913070*x^7 +5135175*x^8 +752753*x^9 + 66066*x^10 +3367*x^11 +91*x^12 +x^13)*exp(x)/2. (End)
%p A170796 seq(n^10*(n^4 +1)/2, n=0..20); # _G. C. Greubel_, Oct 11 2019
%t A170796 Table[n^10*(n^4 +1)/2, {n,0,20}] (* _G. C. Greubel_, Oct 11 2019 *)
%o A170796 (Magma)[n^10*(n^4+1)/2: n in [0..20]]; // _Vincenzo Librandi_, Aug 26 2011
%o A170796 (PARI) vector(21, m, (m-1)^10*((m-1)^4 + 1)/2) \\ _G. C. Greubel_, Oct 11 2019
%o A170796 (Sage) [n^10*(n^4 +1)/2 for n in (0..20)] # _G. C. Greubel_, Oct 11 2019
%o A170796 (GAP) List([0..20], n-> n^10*(n^4 +1)/2); # _G. C. Greubel_, Oct 11 2019
%Y A170796 Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), this sequence (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).
%K A170796 nonn,easy
%O A170796 0,3
%A A170796 _N. J. A. Sloane_, Dec 11 2009