This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A170807 #6 Sep 29 2013 03:36:12 %S A170807 1,0,1,1,2,4,7 %N A170807 Take the standard 2-D lattice packing of pennies; a(n) = number of ways to pick n pennies (modulo rotations and reflections) such that the graph with nodes = centers of pennies, edges = pairs of touching pennies is connected and every edge belongs to at least one triangle. %e A170807 Examples for n=3,4,5,6,7: %e A170807 n=3: %e A170807 ..o %e A170807 .o.o %e A170807 n=4: %e A170807 ..o %e A170807 .o.o %e A170807 ..o %e A170807 n=5: %e A170807 ..o.o %e A170807 .o.o.o %e A170807 . %e A170807 ....o %e A170807 .o.o.o %e A170807 ..o %e A170807 n=6: %e A170807 .o.o.o %e A170807 o.o.o %e A170807 . %e A170807 ...o.o %e A170807 o.o.o %e A170807 .o %e A170807 . %e A170807 ...o %e A170807 o.o.o %e A170807 .o.o %e A170807 . %e A170807 ..o %e A170807 .o.o %e A170807 o.o.o %e A170807 n=7: %e A170807 ..o.o.o %e A170807 .o.o.o.o %e A170807 . %e A170807 ..o.o %e A170807 .o.o.o %e A170807 ..o.o %e A170807 . %e A170807 ...o.o %e A170807 ..o.o %e A170807 .o.o.o %e A170807 . %e A170807 ....o.o %e A170807 .o.o.o.o %e A170807 ..o %e A170807 . %e A170807 ....o.o %e A170807 ...o.o.o %e A170807 ..o.o %e A170807 . %e A170807 ....o %e A170807 .o.o.o.o %e A170807 ..o...o %e A170807 . %e A170807 .....o.o %e A170807 ..o.o.o %e A170807 .o.o %Y A170807 Cf. A171604. %K A170807 nonn,more %O A170807 1,5 %A A170807 _N. J. A. Sloane_, Dec 17 2009 %E A170807 a(6) and a(7) corrected by _John W. Layman_, Dec 17 2009