A170819 a(n) = product of distinct primes of the form 4k-1 that divide n.
1, 1, 3, 1, 1, 3, 7, 1, 3, 1, 11, 3, 1, 7, 3, 1, 1, 3, 19, 1, 21, 11, 23, 3, 1, 1, 3, 7, 1, 3, 31, 1, 33, 1, 7, 3, 1, 19, 3, 1, 1, 21, 43, 11, 3, 23, 47, 3, 7, 1, 3, 1, 1, 3, 11, 7, 57, 1, 59, 3, 1, 31, 21, 1, 1, 33, 67, 1, 69, 7, 71, 3, 1, 1, 3, 19, 77, 3, 79, 1, 3, 1, 83, 21, 1
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A170819 := proc(n) a := 1 ; for p in numtheory[factorset](n) do if p mod 4 = 3 then a := a*p ; end if; end do: a ; end proc: seq(A170819(n),n=1..20) ; # R. J. Mathar, Jun 07 2011
-
Mathematica
Array[Times @@ Select[FactorInteger[#][[All, 1]], Mod[#, 4] == 3 &] &, 85] (* Michael De Vlieger, Feb 19 2019 *)
-
PARI
for(n=1,99, t=select(x->x%4==3, factor(n)[,1]); print1(prod(i=1,#t,t[i])","))
Formula
Multiplicative with a(p^e) = p^A011765(p+1), e > 0. - R. J. Mathar, Jun 07 2011
Extensions
Extended with PARI program by M. F. Hasler, Dec 23 2009