A170877 Number of binary words of length n with properties that there is no pair of adjacent 1's and no subword of the form X^4 for any string X.
1, 2, 3, 5, 7, 10, 15, 22, 30, 43, 61, 88, 123, 173, 246, 348, 487, 688, 972, 1371, 1928, 2714, 3822, 5387, 7582, 10681, 15046, 21194, 29835, 42009, 59159, 83305, 117292, 165170, 232593, 327530, 461198, 649431, 914493, 1287747, 1813281, 2553346, 3595465
Offset: 0
Keywords
Examples
a(3) = 5: 000, 001, 010, 100, 101. a(4) = 7: 0001, 0010, 0100, 1000, 0101, 1010, 1001.
Links
- Lars Blomberg, Table of n, a(n) for n = 0..43
Extensions
a(24)-a(42) from Lars Blomberg, Aug 22 2013
Comments