A170890 Toothpick sequence similar to A160406, but always staying outside the wedge, starting with a horizontal half-toothpick which protrudes from the vertex of the wedge.
0, 1, 2, 4, 7, 10, 14, 21, 29, 37, 43, 53, 61, 71, 83, 103, 123, 139, 151, 165, 173, 183, 195, 215, 235, 253, 271, 295, 317, 345, 385, 441, 493, 531, 559, 581, 589, 599, 611, 631, 651, 669, 687, 711, 733, 761, 801, 857, 909, 949, 983, 1015, 1037, 1065, 1105, 1161
Offset: 0
Keywords
Examples
From _M. F. Hasler_, Jan 29 2013: (Start) The first steps are illustrated as follows, where two vertical "|" or three horizontal "_" correspond to one single full toothpick: : ___ ___ |___ ___| : ___ |___| |___| | |___| | : _ |_ |_ | |_| | |_| | | |_| : /\ |/\ |/\ |/\ ¯¯¯|/\ |¯¯¯|/\ : / \ / \ / \ / \ / \ / \ : : a(0)=0, a(1)=1, a(2)=2, a(3)=4, a(5)=7, a(6)=10, ... (End)
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Programs
-
PARI
A170890(n, print_all=0)={ my( cnt=n>0, ee=[[1,1]], p=Set(vector(2*n-cnt,k,k-n-abs(k-n)*I)), c, d); for(i=2, n, print_all & print1(cnt","); p=setunion(p, Set(Mat(ee~)[, 1])); my(ne=[]); for(k=1, #ee, setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne, Set([[c, d]])); setsearch(p, c-2*d) || ne=setunion(ne, Set([[c-2*d, -d]]))); forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] & k-- & ee=vecextract(ee, Str("^"k"..", k+1))); cnt+=#ee); cnt} \\ - M. F. Hasler, Jan 29 2013
Extensions
a(9) corrected by Omar E. Pol, following an observation by Kevin Ryde, Jan 29 2013
Terms beyond a(9) from M. F. Hasler, Jan 29 2013
Comments