cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170892 Toothpick sequence similar to A160406, but always staying outside the wedge, starting at stage 1 with a vertical toothpick whose endpoint touches the vertex of the wedge.

This page as a plain text file.
%I A170892 #24 Feb 24 2021 02:48:19
%S A170892 0,1,2,4,8,12,16,24,34,44,48,56,66,78,90,112,138,156,160,168,178,190,
%T A170892 202,224,250,270,282,304,332,364,406,472,538,572,576,584,594,606,618,
%U A170892 640,666,686,698,720,748,780,822,888,954,990,1002,1024,1052,1084,1126,1192,1260,1308,1350,1418,1502,1604,1750,1944
%N A170892 Toothpick sequence similar to A160406, but always staying outside the wedge, starting at stage 1 with a vertical toothpick whose endpoint touches the vertex of the wedge.
%C A170892 See A170893 for the first differences.
%H A170892 David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
%H A170892 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%o A170892 (PARI) A170892(n, print_all=0)={my( ee=[[2*I, I]], p=Set( concat( vector( 2*n-(n>0),k,k-n-abs(k-n)*I ), I )), cnt=2); print_all & print1("1,2"); n<3 & return(n); for(i=3, n, p=setunion(p, Set(Mat(ee~)[, 1])); my(c, d, ne=[]); for( k=1, #ee, setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne, Set([[c, d]])); setsearch(p, c-2*d) || ne=setunion(ne, Set([[c-2*d, -d]]))); forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] & k-- & ee=vecextract(ee, Str("^"k"..", k+1))); cnt+=#ee; print_all & print1(","cnt)); cnt} \\ - _M. F. Hasler_, Jan 30 2013
%Y A170892 Cf. A139250, A160406, A170886, A170888, A170890, A170893.
%K A170892 nonn
%O A170892 0,3
%A A170892 _Omar E. Pol_, Jan 09 2010
%E A170892 Terms beyond a(10) from _M. F. Hasler_, Jan 30 2013