This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A170892 #24 Feb 24 2021 02:48:19 %S A170892 0,1,2,4,8,12,16,24,34,44,48,56,66,78,90,112,138,156,160,168,178,190, %T A170892 202,224,250,270,282,304,332,364,406,472,538,572,576,584,594,606,618, %U A170892 640,666,686,698,720,748,780,822,888,954,990,1002,1024,1052,1084,1126,1192,1260,1308,1350,1418,1502,1604,1750,1944 %N A170892 Toothpick sequence similar to A160406, but always staying outside the wedge, starting at stage 1 with a vertical toothpick whose endpoint touches the vertex of the wedge. %C A170892 See A170893 for the first differences. %H A170892 David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.] %H A170892 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %o A170892 (PARI) A170892(n, print_all=0)={my( ee=[[2*I, I]], p=Set( concat( vector( 2*n-(n>0),k,k-n-abs(k-n)*I ), I )), cnt=2); print_all & print1("1,2"); n<3 & return(n); for(i=3, n, p=setunion(p, Set(Mat(ee~)[, 1])); my(c, d, ne=[]); for( k=1, #ee, setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne, Set([[c, d]])); setsearch(p, c-2*d) || ne=setunion(ne, Set([[c-2*d, -d]]))); forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] & k-- & ee=vecextract(ee, Str("^"k"..", k+1))); cnt+=#ee; print_all & print1(","cnt)); cnt} \\ - _M. F. Hasler_, Jan 30 2013 %Y A170892 Cf. A139250, A160406, A170886, A170888, A170890, A170893. %K A170892 nonn %O A170892 0,3 %A A170892 _Omar E. Pol_, Jan 09 2010 %E A170892 Terms beyond a(10) from _M. F. Hasler_, Jan 30 2013