cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170908 Numerators in Taylor series expansion of Product_{n >= 1} (1+x^n/n!).

This page as a plain text file.
%I A170908 #8 Jun 24 2024 17:15:54
%S A170908 1,1,1,2,5,2,41,169,541,71,8983,44419,20183,802751,445223,52275409,
%T A170908 166257661,26261353,2160586067,4871649347,3667033133,2762567051857,
%U A170908 10112898715063,12453960597367,24546527305109,48002125894859,5216471357244949,159144839200310539,3124937204888091941
%N A170908 Numerators in Taylor series expansion of Product_{n >= 1} (1+x^n/n!).
%H A170908 H. Gingold, H. W. Gould, and M. E. Mays, <a href="https://www.researchgate.net/publication/268023169_Power_product_expansions">Power product expansions</a>, Util. Math., 34 (1988), 143-161.
%e A170908 1 + x + (1/2)*x^2 + (2/3)*x^3 + (5/24)*x^4 + (2/15)*x^5 + (41/360)*x^6 + (169/5040)*x^7 + ...
%t A170908 nmax=28; Numerator[CoefficientList[Series[Product[ (1+x^n/n!),{n,nmax}],{x,0,nmax}],x]] (* _Stefano Spezia_, Jun 24 2024 *)
%Y A170908 Cf. A170909.
%K A170908 nonn,frac
%O A170908 0,4
%A A170908 _N. J. A. Sloane_, Jan 30 2010
%E A170908 a(28) from _Stefano Spezia_, Jun 24 2024