cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170911 Write exp(-x) = Product_{n>=1} (1 + g_n x^n); a(n) = denominator(g_n).

This page as a plain text file.
%I A170911 #7 Jan 05 2021 02:41:01
%S A170911 1,2,3,8,5,72,7,128,81,800,11,13824,13,6272,30375,32768,17,419904,19,
%T A170911 20480000,750141,247808,23,1528823808,15625,1384448,1594323,
%U A170911 5035261952,29,30233088000000,31,2147483648,235782657,37879808,1313046875,240734712102912,37,189267968
%N A170911 Write exp(-x) = Product_{n>=1} (1 + g_n x^n); a(n) = denominator(g_n).
%H A170911 H. Gingold, H. W. Gould, and Michael E. Mays, <a href="https://www.researchgate.net/publication/268023169_Power_product_expansions">Power Product Expansions</a>, Utilitas Mathematica 34 (1988), 143-161.
%e A170911 -1, 1/2, 1/3, 3/8, 1/5, 13/72, 1/7, 27/128, 8/81, 91/800, 1/11, ...
%p A170911 L:=100; t1:=exp(-x); t0:=series(t1,x,L): g:=[]; M:=40; t2:=t0:
%p A170911 for n from 1 to M do t3:=coeff(t2,x,n); t2:=series(t2/(1+t3*x^n),x,L); g:=[op(g),t3]; od: g;
%Y A170911 Cf. A170910 (numerators).
%K A170911 nonn,frac
%O A170911 1,2
%A A170911 _N. J. A. Sloane_, Jan 30 2010