This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A170915 #50 Oct 09 2019 02:52:26 %S A170915 1,1,6,6,120,120,5040,280,72576,362880,39916800,11975040,1245404160, %T A170915 88957440,1307674368000,11675664000,71137485619200,1067062284288000, %U A170915 121645100408832000,101370917007360000,10218188434341888000,5109094217170944000,25852016738884976640000 %N A170915 Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n); a(n) = denominator(g_n). %C A170915 From _Petros Hadjicostas_, Oct 06 2019: (Start) %C A170915 The recurrence about (A(m,n): m,n >= 1) in the Formula section follows from Theorem 3 in Gingold et al. (1988); see also Gingold and Knopfmacher (1995, p. 1222). A(m=1,n) equals the n-th coefficient of the Taylor expansion of 1 + sin(x). %C A170915 If 1 + sin(x) = 1/Product_{n>=1} (1 + f_n * x^n) (inverse power product expansion), then Gingold and Knopfmacher (1995) and Alkauskas (2008, 2009) proved that f_n = -g_n for n odd, and Sum_{s|n} (-g_{n/s})^s/s = -Sum_{s|n} (-f_{n/s})^s/s. [We caution that different authors may use -g_n for g_n, or -f_n for f_n, or both.] We have A328191(n) = numerator(f_n) and A328186(n) = denominator(f_n). %C A170915 _Wolfdieter Lang_ (see the link below) examined inverse power product expansions both for ordinary g.f.'s and for exponential g.f.'s. %C A170915 In all cases, we assume the g.f.'s are unital, i.e., the g.f.'s start with a constant 1. %C A170915 (End) %H A170915 Giedrius Alkauskas, <a href="http://arxiv.org/abs/0801.0805">One curious proof of Fermat's little theorem</a>, arXiv:0801.0805 [math.NT], 2008. %H A170915 Giedrius Alkauskas, <a href="https://www.jstor.org/stable/40391097">A curious proof of Fermat's little theorem</a>, Amer. Math. Monthly 116(4) (2009), 362-364. %H A170915 H. Gingold, H. W. Gould, and Michael E. Mays, <a href="https://www.researchgate.net/publication/268023169_Power_product_expansions">Power Product Expansions</a>, Utilitas Mathematica 34 (1988), 143-161. %H A170915 H. Gingold and A. Knopfmacher, <a href="http://dx.doi.org/10.4153/CJM-1995-062-9">Analytic properties of power product expansions</a>, Canad. J. Math. 47 (1995), 1219-1239. %H A170915 W. Lang, <a href="/A157162/a157162.txt">Recurrences for the general problem</a>, 2009. %F A170915 From _Petros Hadjicostas_, Oct 07 2019: (Start) %F A170915 a(2*n+1) = A328186(2*n+1) for n >= 0. %F A170915 Define (A(m,n): n,m >= 1) by A(m=1,2*n+1) = (-1)^n/(2*n+1)! for n >= 0, A(m=1,2*n) = 0 for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then g_n = A(n,n). (End) %e A170915 g_n = 1, 0, -1/6, 1/6, -19/120, 19/120, -659/5040, 37/280, -7675/72576, ... %p A170915 # Calculates the fractions g_n (choose L much larger than M): %p A170915 PPE_sin := proc(L, M) %p A170915 local t1, t0, g, t2, n, t3; %p A170915 if L < 2.5*M then print("Choose larger value for L"); %p A170915 else %p A170915 t1 := 1 + sin(x); %p A170915 t0 := series(t1, x, L); %p A170915 g := []; t2 := t0; %p A170915 for n to M do %p A170915 t3 := coeff(t2, x, n); %p A170915 t2 := series(t2/(1 + t3*x^n), x, L); %p A170915 g := [op(g), t3]; %p A170915 end do; %p A170915 end if; %p A170915 [seq(g[n], n = 1 .. nops(g))]; %p A170915 end proc; %p A170915 # Calculates the denominators of g_n: %p A170915 h1 := map(denom, PPE_sin(100, 40)); # _Petros Hadjicostas_, Oct 06 2019 by modifying _N. J. A. Sloane_'s program from A170912 and A170913. %t A170915 A[m_, n_] := %t A170915 A[m, n] = %t A170915 Which[m == 1, (1-(-1)^n)*(-1)^Floor[(n-1)/2]/(2*n!), m > n >= 1, 0, True, %t A170915 A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]]; %t A170915 a[n_] := Denominator[A[n, n]]; %t A170915 a /@ Range[1, 55] (* _Petros Hadjicostas_, Oct 06 2019, courtesy of _Jean-François Alcover_ *) %Y A170915 Numerators are in A170914. %Y A170915 Cf. A170910, A170911, A170912, A170913, A328186, A328191. %K A170915 nonn,frac %O A170915 1,3 %A A170915 _N. J. A. Sloane_, Jan 30 2010