This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A170928 #17 Jan 09 2021 02:52:27 %S A170928 822,1195,1636,2472,3720,5856,8737,12202,16335,21333,27612,35185, %T A170928 43968,54013,65464,78281,92422,107932,126404,147816,171556,197041, %U A170928 224506,253587,285314,320620,359151,400064,442886,487920,536844,589129,644797 %N A170928 Least magic constant of magic squares using Smith numbers. %C A170928 a(n) >= (1/n)*Sum_{i=1..n^2} A006753(i). %H A170928 Natalia Makarova, <a href="http://www.natalimak1.narod.ru/minsmit1.htm">Construction of smallest magic squares from Smith numbers</a> (in Russian) %H A170928 <a href="http://dxdy.ru/post226917.html#p226917">The square of order 4</a> %H A170928 <a href="http://dxdy.ru/post257980.html#p257980">The square of order 5</a> %H A170928 <a href="http://dxdy.ru/post258614.html#p258614">The square of order 6</a> %H A170928 <a href="http://dxdy.ru/post300437.html#p300437">The square of order 7</a> %H A170928 <a href="http://dxdy.ru/post302095.html#p302095">The square of order 9</a> %e A170928 Magic square of order 3: see the book: M. Gardner. From the Penrose tilings to securely encrypted, 1993: %e A170928 94 382 346 %e A170928 526 274 22 %e A170928 202 166 454 %e A170928 . %e A170928 The magic constant S = 822 %e A170928 Orders 4 to 6 are from participants of scientific forum dxdy.ru %e A170928 The square of order 4: %e A170928 22 346 562 265 %e A170928 778 274 85 58 %e A170928 4 454 382 355 %e A170928 391 121 166 517 %e A170928 . %e A170928 S = 1195 %e A170928 The square of order 5: %e A170928 355 576 4 319 382 %e A170928 454 85 391 648 58 %e A170928 27 535 346 526 202 %e A170928 706 166 378 121 265 %e A170928 94 274 517 22 729 %e A170928 . %e A170928 S = 1636 %e A170928 The square of order 6: %e A170928 729 4 636 762 22 319 %e A170928 27 663 654 526 85 517 %e A170928 391 645 58 378 438 562 %e A170928 382 346 454 121 634 535 %e A170928 355 648 94 483 627 265 %e A170928 588 166 576 202 666 274 %K A170928 nonn,base %O A170928 3,1 %A A170928 Stefano Tognon, Feb 04 2010 %E A170928 a(7), a(9) added by _Natalia Makarova_, Apr 02 2010 %E A170928 Edited by _Max Alekseyev_, May 26 2012