cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170928 Least magic constant of magic squares using Smith numbers.

This page as a plain text file.
%I A170928 #17 Jan 09 2021 02:52:27
%S A170928 822,1195,1636,2472,3720,5856,8737,12202,16335,21333,27612,35185,
%T A170928 43968,54013,65464,78281,92422,107932,126404,147816,171556,197041,
%U A170928 224506,253587,285314,320620,359151,400064,442886,487920,536844,589129,644797
%N A170928 Least magic constant of magic squares using Smith numbers.
%C A170928 a(n) >= (1/n)*Sum_{i=1..n^2} A006753(i).
%H A170928 Natalia Makarova, <a href="http://www.natalimak1.narod.ru/minsmit1.htm">Construction of smallest magic squares from Smith numbers</a> (in Russian)
%H A170928 <a href="http://dxdy.ru/post226917.html#p226917">The square of order 4</a>
%H A170928 <a href="http://dxdy.ru/post257980.html#p257980">The square of order 5</a>
%H A170928 <a href="http://dxdy.ru/post258614.html#p258614">The square of order 6</a>
%H A170928 <a href="http://dxdy.ru/post300437.html#p300437">The square of order 7</a>
%H A170928 <a href="http://dxdy.ru/post302095.html#p302095">The square of order 9</a>
%e A170928 Magic square of order 3: see the book: M. Gardner. From the Penrose tilings to securely encrypted, 1993:
%e A170928    94 382 346
%e A170928   526 274  22
%e A170928   202 166 454
%e A170928 .
%e A170928 The magic constant S = 822
%e A170928 Orders 4 to 6 are from participants of scientific forum dxdy.ru
%e A170928 The square of order 4:
%e A170928    22 346 562 265
%e A170928   778 274  85  58
%e A170928     4 454 382 355
%e A170928   391 121 166 517
%e A170928 .
%e A170928 S = 1195
%e A170928 The square of order 5:
%e A170928   355 576   4 319 382
%e A170928   454  85 391 648  58
%e A170928    27 535 346 526 202
%e A170928   706 166 378 121 265
%e A170928    94 274 517  22 729
%e A170928 .
%e A170928 S = 1636
%e A170928 The square of order 6:
%e A170928   729   4 636 762  22 319
%e A170928    27 663 654 526  85 517
%e A170928   391 645  58 378 438 562
%e A170928   382 346 454 121 634 535
%e A170928   355 648  94 483 627 265
%e A170928   588 166 576 202 666 274
%K A170928 nonn,base
%O A170928 3,1
%A A170928 Stefano Tognon, Feb 04 2010
%E A170928 a(7), a(9) added by _Natalia Makarova_, Apr 02 2010
%E A170928 Edited by _Max Alekseyev_, May 26 2012