This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171059 #13 Aug 12 2018 11:55:39 %S A171059 3,1,2,14,4,15,5,6,7,9,8,10,26,11,12,50,13,23,16,17,25,18,19,20,80,21, %T A171059 22,24,29,27,28,30,37,90,31,32,33,34,35,200,36,43,84,60,201,38,61,39, %U A171059 40,41,42,430,53,48,44,320,45,46,79,47,49,51,52 %N A171059 a(n) is the lexically first sequence of distinct nonzero integers such that if S(n) is the string formed from the digits of a(1)a(2)...a(n), then dividing S(n) into substrings with lengths equal to the successive digits of S(n) (treating 0 as 10) results in substrings beginning with the successive digits of Pi (A000796). %C A171059 Erase the punctuation: %C A171059 S(Pi) = 312144155679810261112501323161725181920802122242927283037903132333435... %C A171059 Divide into chunks -- the size of each chunk is given by the successive DIGITS of S(Pi): %C A171059 312.1.44.1.5567.9810.2.61112.50132.316172.5181920.802122242.92728303.7.9031323334.35 %C A171059 (the "0" digits produce a 10-digit chunk) %C A171059 Replace all dots (.) with carriage returns: %C A171059 312 %C A171059 1 %C A171059 44 %C A171059 1 %C A171059 5567 %C A171059 9810 %C A171059 2 %C A171059 61112 %C A171059 50132 %C A171059 316172 %C A171059 5181920 %C A171059 802122242 %C A171059 92728303 %C A171059 7 %C A171059 9031323334 %C A171059 35 %C A171059 ... %C A171059 The first column shows Pi! %C A171059 a(63) = 52 is the last term, a(64) would have to begin with a 0. - _Charlie Neder_, Jun 24 2018 %H A171059 Eric Angelini, <a href="http://www.cetteadressecomportecinquantesignes.com/PiFou.htm">Un nombre de ouf!</a> %H A171059 E. Angelini, <a href="/A171059/a171059.pdf">Un nombre de ouf!</a> [Cached copy, with permission] %K A171059 nonn,base,fini,full %O A171059 1,1 %A A171059 _N. J. A. Sloane_, Sep 04 2010, based on a posting to the Sequence Fans Mailing List by _Eric Angelini_, Aug 24 2010 %E A171059 a(40)-a(63) from _Charlie Neder_, Jun 24 2018