cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171080 a(n) = Product_{3 <= p <= 2*n+1, p prime} p^floor(2*n / (p - 1)).

Original entry on oeis.org

1, 3, 45, 945, 14175, 467775, 638512875, 1915538625, 488462349375, 194896477400625, 32157918771103125, 2218896395206115625, 3028793579456347828125, 9086380738369043484375, 3952575621190533915703125, 28304394023345413370350078125, 7217620475953080409439269921875
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2010

Keywords

References

  • F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.5.2, p. 13.

Crossrefs

Programs

  • Maple
    f:=proc(n) local q,t1; t1:=1; for q from 3 to 2*n+1 do if isprime(q) then t1:=t1*q^floor(2*n/(q-1)); fi; od; t1; end;
  • Mathematica
    a[n_] := Product[If[PrimeQ[q], q^Floor[2 n/(q - 1)], 1], {q, 3, 2 n + 1}]
    Table[a[n], {n, 0, 20}] (* Wolfgang Hintze, Oct 03 2014 *)
  • SageMath
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        p = mul(s for s in map(lambda i: i+1, divisors(2*n)) if is_prime(s))
        return (p * a_rec(n - 1)) // 2
    print([a_rec(n) for n in range(17)])  # Peter Luschny, Dec 12 2023

Formula

From Peter Luschny, Dec 12 2023: (Start)
a(n) = (Clausen(2*n)*a(n-1))/2 for n > 0, where Clausen(n) = A160014(1, n).
a(n) = A091137(2*n) / 2^(2*n). (End)