A171080 a(n) = Product_{3 <= p <= 2*n+1, p prime} p^floor(2*n / (p - 1)).
1, 3, 45, 945, 14175, 467775, 638512875, 1915538625, 488462349375, 194896477400625, 32157918771103125, 2218896395206115625, 3028793579456347828125, 9086380738369043484375, 3952575621190533915703125, 28304394023345413370350078125, 7217620475953080409439269921875
Offset: 0
Keywords
References
- F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.5.2, p. 13.
Links
- Victor M. Buchstaber, Alexander P. Veselov, Todd polynomials and Hirzebruch numbers, arXiv:2310.07383 [math.AT], Oct. 2023.
Programs
-
Maple
f:=proc(n) local q,t1; t1:=1; for q from 3 to 2*n+1 do if isprime(q) then t1:=t1*q^floor(2*n/(q-1)); fi; od; t1; end;
-
Mathematica
a[n_] := Product[If[PrimeQ[q], q^Floor[2 n/(q - 1)], 1], {q, 3, 2 n + 1}] Table[a[n], {n, 0, 20}] (* Wolfgang Hintze, Oct 03 2014 *)
-
SageMath
from functools import cache @cache def a_rec(n): if n == 0: return 1 p = mul(s for s in map(lambda i: i+1, divisors(2*n)) if is_prime(s)) return (p * a_rec(n - 1)) // 2 print([a_rec(n) for n in range(17)]) # Peter Luschny, Dec 12 2023
Formula
From Peter Luschny, Dec 12 2023: (Start)
a(n) = (Clausen(2*n)*a(n-1))/2 for n > 0, where Clausen(n) = A160014(1, n).
a(n) = A091137(2*n) / 2^(2*n). (End)