cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171105 Multicomponent Gromov-Witten invariants for genus 0.

This page as a plain text file.
%I A171105 #12 May 04 2022 18:44:46
%S A171105 1,1,12,675,109781,40047888
%N A171105 Multicomponent Gromov-Witten invariants for genus 0.
%C A171105 In this entry and in A171104, a multicomponent Gromov-Witten invariant is the number of (possibly reducible, hence "multicomponent") curves in CP^2 of degree n and genus g passing through given 3n-1+g points, so this is the Severi degree N(n, delta) where cogenus delta = (n-1)*(n-2)/2 - g, cf. A171108 and references therein. In particular, a(5) = A171116(5). - _Andrey Zabolotskiy_, May 04 2022
%H A171105 Florian Block, <a href="https://arxiv.org/abs/1006.0218">Computing node polynomials for plane curves</a>, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643. See Appendix B.
%H A171105 Grigory Mikhalkin, <a href="https://arxiv.org/abs/math/0312530">Enumerative tropical algebraic geometry in R^2</a>, arXiv:math/0312530 [math.AG], 2003-2004.
%Y A171105 Cf. A171104, A171108, A171116.
%Y A171105 Cf. Gromov-Witten invariants, counting irreducible curves only: A171109, A171110, A171111.
%K A171105 nonn,more
%O A171105 1,3
%A A171105 _N. J. A. Sloane_, Sep 27 2010
%E A171105 a(5)-a(6) added by _Andrey Zabolotskiy_, May 04 2022