This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A171110 #11 May 03 2022 08:20:29 %S A171110 0,0,0,27,36855,58444767,122824720116 %N A171110 Gromov-Witten invariants for genus 2. %C A171110 a(8)-a(10) are conjectured to be 346860150644700, 1301798459308709880, 6383405726993645784000 [see Belorousski & Pandharipande and Eguchi & Xeong]. - _Andrey Zabolotskiy_, May 03 2022 %H A171110 Pasha Belorousski and Rahul Pandharipande, <a href="http://www.numdam.org/item/ASNSP_2000_4_29_1_171_0/">A descendent relation in genus 2</a>, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 171-191; arXiv:<a href="https://arxiv.org/abs/math/9803072">math/9803072</a> [math.AG], 1998. %H A171110 Tohru Eguchi and Chuan-Sheng Xiong, <a href="https://doi.org/10.4310/ATMP.1998.v2.n1.a9">Quantum Cohomology at Higher Genus: Topological Recursion Relations and Virasoro Conditions</a>, Adv. Theor. Math. Phys., 2 (1998), 219-229; arXiv:<a href="https://arxiv.org/abs/hep-th/9801010">hep-th/9801010</a>, 1998. %H A171110 Sergey Fomin and Grigory Mikhalkin, <a href="https://doi.org/10.4171/JEMS/238">Labeled floor diagrams for plane curves</a>, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:<a href="https://arxiv.org/abs/0906.3828">0906.3828</a> [math.AG], 2009-2010. %H A171110 Andreas Gathmann, <a href="https://arxiv.org/abs/math/0305361">Topological recursion relations and Gromov-Witten invariants in higher genus</a>, arXiv:math/0305361 [math.AG], 2003. %Y A171110 Cf. A171109. %K A171110 nonn,more %O A171110 1,4 %A A171110 _N. J. A. Sloane_, Sep 27 2010 %E A171110 a(7) from Gathmann added by _Andrey Zabolotskiy_, May 02 2022