cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171111 Gromov-Witten invariants for genus 3.

This page as a plain text file.
%I A171111 #10 May 03 2022 08:19:28
%S A171111 0,0,0,1,7915,34435125,153796445095
%N A171111 Gromov-Witten invariants for genus 3.
%C A171111 a(8)-a(10) are conjectured to be 800457740515775, 5039930694167991360, 38747510483053595091600 [see Eguchi & Xeong]. - _Andrey Zabolotskiy_, May 03 2022
%H A171111 Tohru Eguchi and Chuan-Sheng Xiong, <a href="https://doi.org/10.4310/ATMP.1998.v2.n1.a9">Quantum Cohomology at Higher Genus: Topological Recursion Relations and Virasoro Conditions</a>, Adv. Theor. Math. Phys., 2 (1998), 219-229; arXiv:<a href="https://arxiv.org/abs/hep-th/9801010">hep-th/9801010</a>, 1998.
%H A171111 Sergey Fomin and Grigory Mikhalkin, <a href="https://doi.org/10.4171/JEMS/238">Labeled floor diagrams for plane curves</a>, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:<a href="https://arxiv.org/abs/0906.3828">0906.3828</a> [math.AG], 2009-2010.
%H A171111 Andreas Gathmann, <a href="https://arxiv.org/abs/math/0305361">Topological recursion relations and Gromov-Witten invariants in higher genus</a>, arXiv:math/0305361 [math.AG], 2003.
%Y A171111 Cf. A171109.
%K A171111 nonn,more
%O A171111 1,5
%A A171111 _N. J. A. Sloane_, Sep 27 2010
%E A171111 a(7) from Gathmann added by _Andrey Zabolotskiy_, May 02 2022