cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171154 Smallest prime whose decimal expansion begins with concatenation of first n primes in descending order.

Original entry on oeis.org

2, 3203, 5323, 75323, 11753221, 131175329, 171311753203, 19171311753229, 231917131175321, 292319171311753231, 3129231917131175327, 3731292319171311753239, 41373129231917131175321, 43413731292319171311753233, 4743413731292319171311753269, 534743413731292319171311753223
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Dec 04 2009

Keywords

Comments

Sequence is conjectured to be infinite.
a(n) = "prime(n)...prime(1) R(n)".
R(n) for n>1: 03, 3, 3, 21, 9, 03, 29, 1, 31, 7, 39, 1, 33, 69, 23, 3, 59, 27, ...
It is conjectured that R(n)=1 for infinite many n.

Examples

			a(1) = 2 = prime(1) is the exceptional case, because no R(1).
a(2) = 3203 = prime(453) = "32 03", R(2)="03".
a(5) = 11753221 = prime(772902) = "prime(5)...prime(1) 21", R(5)=21.
		

References

  • Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications 2005.

Crossrefs

Programs

  • Python
    from sympy import isprime, primerange, prime
    def a(n):
        if n == 1: return 2
        c = int("".join(map(str, [p for p in primerange(2, prime(n)+1)][::-1])))
        pow10 = 10
        while True:
            c *= 10
            for b in range(1, pow10, 2):
                if b%5 == 0: continue
                if isprime(c+b):
                    return c+b
            pow10 *= 10
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Mar 12 2022

Extensions

a(14) and beyond from Michael S. Branicky, Mar 12 2022