A171154 Smallest prime whose decimal expansion begins with concatenation of first n primes in descending order.
2, 3203, 5323, 75323, 11753221, 131175329, 171311753203, 19171311753229, 231917131175321, 292319171311753231, 3129231917131175327, 3731292319171311753239, 41373129231917131175321, 43413731292319171311753233, 4743413731292319171311753269, 534743413731292319171311753223
Offset: 1
Examples
a(1) = 2 = prime(1) is the exceptional case, because no R(1). a(2) = 3203 = prime(453) = "32 03", R(2)="03". a(5) = 11753221 = prime(772902) = "prime(5)...prime(1) 21", R(5)=21.
References
- Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications 2005.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..298
Programs
-
Python
from sympy import isprime, primerange, prime def a(n): if n == 1: return 2 c = int("".join(map(str, [p for p in primerange(2, prime(n)+1)][::-1]))) pow10 = 10 while True: c *= 10 for b in range(1, pow10, 2): if b%5 == 0: continue if isprime(c+b): return c+b pow10 *= 10 print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Mar 12 2022
Extensions
a(14) and beyond from Michael S. Branicky, Mar 12 2022
Comments