A171171 Corner sequence (starting each round with the corner (SE): 1,2,3).
1, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 4, 1, 4, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 1, 4, 1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 4, 1, 2, 3, 4, 3, 4, 1, 4, 1, 2, 3, 4, 1, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 1, 4, 1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 4, 1, 2, 3, 4, 3, 4, 1, 4, 1, 2, 3, 4, 1, 4, 1
Offset: 1
Examples
================ .......41....... .......32....... ================ ......4141...... ......3..2...... ......4..1...... ......3232...... ================ .....41..41..... .....3....2..... ................ ................ .....4....1..... .....32..32..... ================ ....41414141.... ....3..23..2.... ....4......1.... ....32....32.... ....41....41.... ....3......2.... ....4..14..1.... ....32323232.... ================ ...41......41... ...3........2... ................ ................ ................ ................ ................ ................ ................ ...4........1... ...32......32... ================ And so on. Triangle begins: 1,2,3,4; 1,2,3, 2,3,4, 3,4,1, 4,1,2; 1,2,3, 2,3,4, 3,4,1, 4,1,2; 1,2,3,2,3,4,1,2,3, 2,3,4,3,4,1,2,3,4, 3,4,1,4,1,2,3,4,1, 4,1,2,1,2,3,4,1,2; 1,2,3, 2,3,4, 3,4,1, 4,1,2; 1,2,3,2,3,4,1,2,3, 2,3,4,3,4,1,2,3,4, 3,4,1,4,1,2,3,4,1, 4,1,2,1,2,3,4,1,2; Contribution from _Omar E. Pol_, Dec 09 2009: (Start) Illustration for n = 1..148 ================ .41..41..41..41. .341412..341412. ..3412....3412.. ..434141414121.. .43234123412321. .32.43414121.32. ....32341232.... ....41432141.... .41.34323212.41. .34143214321412. ..343232323212.. ..4321....4321.. .432321..432321. .32..32..32..32. ================ (End)
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Comments