cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171195 G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^5).

This page as a plain text file.
%I A171195 #17 Jul 06 2025 09:02:29
%S A171195 1,1,11,281,13731,1245601,213268203,70580511385,45914883339027,
%T A171195 59241954299963729,152258885235304955131,781096727709105092232777,
%U A171195 8006263111571482684378716067,164048440920655457493139473502081
%N A171195 G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^5).
%H A171195 Seiichi Manyama, <a href="/A171195/b171195.txt">Table of n, a(n) for n = 0..79</a>
%F A171195 a(n) ~ c * 2^(n*(n-1)/2) * 5^n, where c = 0.444871440417987089861554304425221691031547... - _Vaclav Kotesovec_, Nov 03 2021
%F A171195 a(0) = 1; a(n) = 2^(n-1) * Sum_{x_1, x_2, ..., x_6>=0 and x_1+x_2+...+x_6=n-1} (1/2)^x_1 * Product_{k=1..6} a(x_k). - _Seiichi Manyama_, Jul 06 2025
%t A171195 nmax = 15; A[_] = 0; Do[A[x_] = 1/(1 - x*A[2*x]^5) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* _Vaclav Kotesovec_, Nov 03 2021 *)
%o A171195 (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^5) ); polcoeff(A, n)}
%Y A171195 Cf. A015083, A171192-A171194, A171196-A171198.
%K A171195 nonn
%O A171195 0,3
%A A171195 _Paul D. Hanna_, Dec 05 2009