cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171205 G.f. satisfies: A(x) = (1 + x*A(2x))^5.

This page as a plain text file.
%I A171205 #10 Apr 02 2025 16:09:35
%S A171205 1,5,60,1410,62505,5284401,868838010,281703950040,181448450339760,
%T A171205 232989133846286240,597389845561440183360,3061032714235774931187200,
%U A171205 31357237236616342838622807040,642321739861948533960660029617920,26312068694834430629292373404100369920,2155589935049851254662487477552439610480640
%N A171205 G.f. satisfies: A(x) = (1 + x*A(2x))^5.
%F A171205 Self-convolution 5th power of A171204 where a(n) = A171204(n+1)/2^n for n>=0.
%t A171205 terms = 16; A[_] = 0; Do[A[x_] = (1 + x*A[2x])^5 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* _Stefano Spezia_, Apr 02 2025 *)
%o A171205 (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=(1+x*subst(A, x, 2*x))^5); polcoeff(A, n)}
%Y A171205 Cf. A135868, A171200-A171203, A171204, A171206-A171211.
%K A171205 nonn
%O A171205 0,2
%A A171205 _Paul D. Hanna_, Dec 05 2009
%E A171205 a(14)-a(15) from _Stefano Spezia_, Apr 02 2025